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Abstract

Quantum information is a highly interesting and fast emerging �eld that
involves processing information encoded into quantum systems and their
subsequent use in various information tasks. The use of quantum re-
sources such as superposition and entanglement has been shown to en-
hance information processing capabilities beyond classical means in a
number of communication, information and computation tasks.

In this thesis, we have used single photons to study the advantage
of d-level quantum systems (qudits) for a communication task com-
monly known as random access codes (RACs). A successful experi-
mental demonstration of four dimensional quantum random access codes
(QRACs) is realized to demonstrate that the higher dimensional QRACs
not only outperform the classical RACs but also provide an advantage
over their quantum bit (qubit) counterparts. QRACs are also studied
in regards to two speci�c applications: certi�cation of true randomness
and for testing the non-classicality of quantum systems. A method for
increased certi�cation of generated randomness is realized for the former
and a successful experimental demonstration of a test of non-classicality
with arbitrarily low detection e�ciency is provided for the latter. This
is followed by an implementation of a QRAC in a one-path communica-
tion network consisting of preparation, transformation and measurement
devices. We have shown that the distributed QRAC provides optimal
success probabilities for a number of tasks.

Moreover, a novel quantum protocol for the solution to the problem
of dining cryptographers and anonymous veto voting is presented. This
single photon transmission based protocol provides an e�cient solution,
which is experimentally demonstrated for a three-party description.

Lastly, Nitrogen-Vacancy (NV) center in diamond is studied as a
potential resource for single photon emission and two methods to enhance
the photon collection e�ciency are successfully explored. Due to this
enhancement, single photons from an NV center may also be used in
similar single quantum system based communication experiments.
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Sammanfattning

Kvantinformation är tveklöst ett mycket intressant och snabbt växande
område. Dess fråga är hur man behandlar information som har kodats
i kvantfysikaliska system. Kvantmekaniska resurser som superposition
och snärjelse har visats kunna förbättra informationsbehandlingsförmå-
gan inom ett antal kommunikations- , informations- , och beräkning-
suppgifter.

Fysikaliska system med dimensioner d, baserade på enstaka fotoner
används ofta att utreda de icke-klassiska resursernas företräden över dess
klassiska motsvarigheter i många kommunikationsuppgifter. Vi har un-
dersökt det samma för en kommunikationsuppgift som kallas random
access codes (RAC) och visas experimentellt att RACs som använder
kvantsystem (QRACs) med hög dimension (d = 4) överträ�ar båda de
klassiska varianterna och QRAC med mindre dimensioner d.v.s kvantbit
(qubit). Vi har också prövat QRACs med sikte på särskilda tillämp-
ningar som certi�ering av slumptalsgenerator och icke-klassiskalitet hos
kommunicerade system. Vi presenterar en övergripande metod för ökad
certi�ering av slumptalsgenerator för den förra och en framgångsrik ex-
perimentell realisering med godtycklig låga detektionse�ektivitet för den
senare. Detta följs av en QRAC implementering i form av ett enkelrik-
tad kommunikationsnätverk med förberedelse, transformation och mät-
ningsredskap. Vi har funnit �era olika kommunikationsuppgifter för
dessa fördelade QRAC där dessa fungerar optimalt.

Vi gör också ett kvantprotokoll för att lösa problemet med kryp-
tografernas middag, och hur de kan skydda sin identitet vid en omröst-
ning. Vi presenterar en e�ektiv lösning baserad på enkelfoton kommu-
nikation som visas experimentellt för en tre-parter uppställning.

Sist men inte minst undersöks Kväve-Vakans-Centrum (NV), ett färg-
centrum i diamant. Syftet är att observera generering av enstaka fotoner
vilket sedan visas experimentellt i olika diamant prover. Två metoder att
förbättra foton insamling från NV centrum prövas också och med hjälp
av den observerade förbättringen i foton-insamlingen kan NV center för-
modligen användas i liknande kvantkommunikationsexperiment med en-
staka fotoner.
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Thesis outline

This thesis is an account of all the experimental work conducted during
my PhD studies and is based on the work produced in the articles I-V.
Articles I-III presented here have also been a part of my licentiate and
major parts of chapters 1 to 3 are adapted from my licentiate thesis.

The aim here is to emphasize on the experimental studies conducted
during my PhD but necessary theoretical introduction is provided where
required. The thesis is formulated such that for every topic covered, �rst
a theoretical introduction is provided which is followed by the experi-
mental details. As the emphasis is placed on the conducted experiments,
other relevant details can be found in the articles that are a part of this
thesis.

Chapter 1 contains details on preliminary concepts in quantum in-
formation that are relevant to the contents of this thesis.

Chapter 2 lays the ground work for random access codes (RACs),
classical and quantum (QRACs), followed by an experimental demon-
stration of a high-level (d = 4) QRAC. This work is based on article
I.

Chapter 3 focuses on two applications of QRACs: Generation and
certi�cation of randomness and test of non-classicality of physical sys-
tems with arbitrarily low detection e�ciency. This chapter is based on
articles II and III.

Chapter 4 focuses on distributed tasks using single quantum systems.
First an experimental demonstration of a distributed QRAC is provided
and is relevant to article IV. This is followed by an experimental realiza-
tion of a quantum solution for the dining cryptographer and anonymous
veto problems and is based on article V.

Chapters 5 and 6 cover the theoretical introduction and experimental
investigation of single photon emission from the Nitrogen-Vacancy (NV)
center in diamond. The defect center is studied exclusively from the view
point of a single photon emitting source and two di�erent alternatives
to enhance the emitted photon collection e�ciency are experimentally
investigated. For the photon collection enhancement, facilities in the
3rd Institute of Physics at the University of Stuttgart and Max Planck



Institute for Solid State Research (Stuttgart) were used for ion implan-
tation and annealing along with the fabrication of solid immersion lenses
(SILs) and nanopillars in diamond membranes. The ion implantation
and annealing processes were carried out by Andrej Denisenko and Fe-
lipe Favaro De Oliveira. For nanofabrication, due to licence conditions,
the samples were handled by Sen Yang (SIL), Anurag Kanase and Amit
Finkler (nanopillars) but I was involved in every step and supervised the
whole process.



1. Quantum Information

1.1 Introduction

The theory of quantum mechanics was introduced more than a century
ago and its intriguing yet remarkable properties of superpositions and en-
tanglement, referred to as the spooky action at large distance by Einstein,
have been extensively investigated as quantum resources for information
processing. Superposition implies the simultaneous existence of a system
in two or more states and in the quantum mechanical context, this holds
even for systems consisting of particles. On the other hand, entanglement
refers to the case when two or more parts of a system are correlated in a
way that is�in a sense that can be made precise�stronger than anything
that can be explained by their interactions in the past (while classical
correlations are always explained by past interactions). The understand-
ing, realization and applicability of these properties later led to a newer
theory called quantum information, which promises unique applications
such as quantum computation, quantum metrology and secure quantum
communication, among others.

The word information comes from the latin verb informare, meaning
literally to inform or to form an idea of something . Information, either
in the form of knowledge or data, plays a critical role in our every day
lives where we depend greatly on the exchange of information between
people or di�erent parties. For this purpose, information of any kind
needs to be encoded in di�erent levels of a physical system. Other than
the old school methods of exchange of information as word of mouth or
through a piece of paper, information is usually communicated between
di�erent parties in the form of data commonly known as binary digits or
bits. The term bits was �rst introduced by John W. Tukey, an Ameri-
can statistician, while working at Bell Labs, as an abbreviation for the
word binary digit. Claude E. Shannon, renowned American mathemati-
cian and engineer, was the �rst one to publicly use the term bits in his
well-known article, A Mathematical Theory of Communication, in 1948
[1]. This remarkable theory treated communication as a rigorously stated
mathematical problem that laid the ground work and presented the foun-
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dations of communication and information theory. Hence it comes as no
surprise that Shannon is widely regarded as the father of information
theory. His work has contributed invaluably to the achieved progress
as it forms the basis of all communication and modern day computers,
which has totally revolutionized our way of living.

A binary digit, from now on referred to as a bit, is encoded in a two
level system where the two di�erent states of the system are represented
by binary numbers 0 and 1 and a bit can only have two possible values.
Classical information is in these states of the bit. A typical example of
this is the electrical potential di�erence in electronic circuits where low
and high voltages are used as a representation of the two binary states.
The encoding of classical information into bits is not just restricted to
the above case and there can be a multitude of di�erent schemes used
for a plethora of di�erent applications as various nucleotides in a DNA
sequence or the use of pulsed laser light in an optical �ber or free space
networks [2].

Quantum information, on the other hand, is a generalization of clas-
sical information in the quantum regime where the physical system used
for encoding information obeys the laws of quantum mechanics. A quan-
tum bit (qubit), the quantum analogue of the classical bit, is the most
commonly known quantum system and along with entanglement is con-
sidered an essential resource in many quantum information processing
applications (QIP). The use of quantum resources for encoding infor-
mation has properties and advantages that extend well beyond the ca-
pabilities of the classical systems. From an application point of view,
the use of such quantum resources can make it possible to realize the
implementation of quantum computers, factorization of very large num-
bers, secure communication based on quantum key distribution (QKD)
between distant parties [3�5] and quantum dense coding [6; 7] otherwise
not possible in the classical scenario. In the succeeding section we will
look at some of the properties of a qubit which is the most fundamental
element in quantum information science.

1.1.1 Quantum states and the density operator

The state of any system is the property that makes it distinguishable
from other systems. In classical terms, objects or systems can be dif-
ferentiated from each other based upon their characteristics. Similarly,
the concept of state exists in quantum mechanics as well where states
of a quantum system are represented by normalized vectors |ψ〉 on the
Hilbert space or in other words, are arbitrary normalized linear combi-

2



nations of a set of basis vectors de�ned in the Hilbert space. Quantum
mechanics, despite its probabilistic nature, can still provide complete
information about the state of a system in certain situations (after a
measurement). Such states are generally known as pure states which
are completely described by their state vectors. Eqs. 1.1 and 1.3 are
examples of a pure state. However, pure states are not the only type of
quantum states and in fact, in reality, we mostly deal with mixtures or
ensembles of two or more pure states otherwise known as mixed states.
The only information we have is the probability with which a system
can be in a number of pure states. Mixed states cannot be described
completely by state vectors in the Hilbert space as is the case for pure
states and are generally represented by density operators.

A density operator ρ is a positive semi-de�nite Hermitian matrix with
a unit trace that is used to mathematically represent a quantum state.
In the case of a pure state with state vector ψ, the density operator is
given as

ρ = |ψ〉〈ψ| (1.1)

For pure states, the density operator is also known as a Projection oper-
ator as it projects a given state into the 1D subspace of the vector |ψ〉.
For mixed states, the density operator is a normalized sum of pure states
and is given as

ρ =
∑
i

piρi =
∑
i

pi|ψi〉〈ψi| where
∑
i

pi = 1, pi ≥ 0 ∀ i. (1.2)

Some of the important properties of density operators are that they
are normalized, which implies that Tr (ρ) = 1. ρ is positive semi-de�nite
and have real positive eigenvalues. In addition, for pure states ρ2 = ρ
and Tr

(
ρ2
)

= 1 but for mixed states Tr
(
ρ2
)
< 1. Hence, the density

operator is also an e�cient tool to distinguish between pure and mixed
states.

1.1.2 The quantum bit

Now that we have a basic understanding of quantum states and know
how to mathematically represent them, we will consider a qubit, which
is essentially the simplest system in quantum information. For a qubit,
there are two vectors constituting the basis of the Hilbert space. For
simplicity, consider that the two levels are represented by orthogonal
state vectors |0〉 and |1〉 and are the classical states of the system (as
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they can be well explained by both quantum and classical theories).
However, unlike the classical bit that can either be a 0 or 1, a qubit can
exist in a superposition of the two states |0〉 and |1〉 as the superposition
principle implies that any linear combination of two states is also a state
of the system where the superposition is in itself also a pure state. The
superpositions result every time when the coe�cients α and β are not
equal to one in eq. 1.3. A qubit can then be viewed as the amount
of information needed to store all possible states of a two dimensional
quantum system. The standard and vector representation of the qubit
in the superposition state is represented as

|ψ〉 = α|0〉+ β|1〉 or |ψ〉 =

(
α
β

)
(1.3)

where |0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
are the basis states of the qubit.

The coe�cients α, β ∈ C are arbitrary complex numbers that satisfy
the normalization condition |α|2 + |β|2 = 1. After normalization, we are
left with phase freedom, i.e., any global phase factor can be disregarded
(|ψ〉 and eiφ|ψ〉 are the same states for any given φ) and hence it is
commonly represented as

|ψ (θ, φ)〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉 =

(
cos
(
θ
2

)
eiφ sin

(
θ
2

) ) (1.4)

where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π and these ranges are precisely the
ranges for spherical coordinates thereby enabling the graphical represen-
tation of the state of a qubit by points on the surface of a unit sphere,
as shown below for |ψ〉 in Fig. 1.1. This is more commonly known as
the Bloch sphere. On the Bloch sphere, any two orthogonal states are
always directly opposite to each other such that

〈ψ|ψ⊥〉 = 0 (1.5)

This is due to the Bloch vector (r) described below and the resulting
state |ψ〉⊥ orthogonal to |ψ〉 becomes

|ψ (θ, φ)〉⊥ = |ψ (π − θ, π + φ)〉 = sin

(
θ

2

)
|0〉 − e−iφ cos

(
θ

2

)
|1〉 (1.6)

The Bloch sphere is a geometric visualization of the complete set
of two dimensional quantum states. Such a straightforward geometric
representation exists only for two dimensional systems and is di�cult to
grasp for systems of higher dimensions.
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Figure 1.1: Geometrical representation of the Hilbert space of a single
qubit. Points on the surface and interior of the Bloch sphere represent
density matrices of pure and mixed states.

The state of a quantum system can be easily represented by a density
matrix and the density matrix used to describe a two level system can
be parametrized as

ρ =

(
1
2 + z x− iy
x+ iy 1

2 − z

)
(1.7)

where x, y and z are real numbers.
To better understand the use of Bloch sphere for the geometric repre-

sentation of two dimensional quantum states, one needs to consider the
semi-de�nite property of the density matrix used to represent the states
of the 2D quantum system. If the product of the eigenvalues is greater
than or equal to zero, we end up with the inequality, x2 + y2 + z2 ≤ 1

4 ,
that de�nes the interior of a sphere of unit diameter. This sphere rep-
resents all the states of a qubit where the surface points correspond to
pure states whereas the interior points in the sphere correspond to the
mixed states with the center of the sphere being the maximally mixed
state.

Any density operator for a single qubit can be decomposed into a
linear combination of three Pauli matrices (σx, σy and σz) and the iden-
tity matrix. The Pauli matrices and the identity matrix are the basis
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elements of the vector space of 2× 2 Hermitian matrices and any 2× 2
matrix can then be written as a linear combination of these matrices.

σ =

 σx
σy
σz

 , σx =

(
0 1
1 0

)
, σy =

(
0 − i
i 0

)
, σz =

(
1 0

0 − 1

)
(1.8)

The σx, σy and σz observables have eigenvalues ±1 and their eigen-
states form a complete basis and can be used as basis states. In the case
of σz, the eigenstates are |0〉 and |1〉 and these two states form a ba-
sis generally known as the computational basis. For σx, the eigenstates
are 1√

2
(|0〉 ± |1〉) and these two states form a basis generally known

as the Fourier basis. Lastly, for σy, the corresponding eigenstates are
1√
2
(|0〉 ± i|1〉).
The density matrix can then be rewritten as

ρ =
1

2
(1 + r.~σ) (1.9)

Here r is the Bloch vector and de�nes any state on the Bloch sphere
using θ and φ, and in order to represent the pure states on the Bloch
sphere, the inequality |r| ≤ 1 must hold. Also note that the r-coordinates
represent the expectation values of the Pauli operator [8].

r = r

 sin θ cosφ
sin θ sinφ

cos θ

 (1.10)

As an example, photon's polarization can be used to implement a
qubit. This is covered in detail in section 1.2.4. Although quantum
states of dimension 2 are the most commonly known quantum states,
the work done in the scope of this thesis also involves quantum states of
dimensions d > 2. The state space postulate allows for general d− level
quantum systems also known as qudit, which are state vectors on the
Hilbert space Cd. Considering the computational basis, a qudit can be
written as [9]

|ψ〉 =
d−1∑
k=0

ck|k〉 =


c0

c1
...

cd−1

 (1.11)

where c0, . . . , cd−1 ∈ C are subjected to the normalization constraint
|c0|2 + |c1|2 + . . .+ |cd−1|2 = 1.
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1.1.3 Measurements on a quantum state

In quantum mechanics, a physical system is represented by its quan-
tum state and measurements on a physical system are associated with
observables, where an observable presents some measurable property of
the system. In other words, a measurement on the physical system pro-
vides us with the knowledge of some physical observable of the system,
e.g., position and momentum of a particle, spin or polarization of a pho-
ton etc. In the context of a measurement, the term observable is also
applied to the associated Hermitian operator. A Hermitian operator
has real eigenvalues with orthogonal eigenvectors and their eigenstates
form a complete set of basis states. The observables (σx, σy and σz)
described above are a good example in this regard and their eigenstates
form a complete set of basis states with eigenvalues ±1. While perform-
ing a measurement, the operation of an observable projects the state of
a quantum system into one of the associated eigenstates of the operator
along with a resulting eigenvalue (±1 for a qubit).

If the aim of a measurement is to analyse the polarization states of
photons in a given basis, this can be implemented through a combina-
tion of wave plates and polarising beam splitters (PBS). These optical
components and how these measurements for di�erent basis states are
performed is explained in the experiments included in this thesis. What
is important to state here is that suitable orientations of half-wave plates
(HWPs) and quarter-wave plates (QWPs) can be used to project a given
state onto the eigenvectors of σx σy and σz observables, making it possi-
ble to perform measurements in di�erent measurement bases.

1.2 Experimental quantum state engineering

In this section, we will brie�y look at some of the parameters that are
important from an experimental point of view. The work presented in
this thesis involves physical systems based on single optical photons, as a
resource in quantum information processing. It is perhaps important to
begin with a brief introduction and formulation regarding single photon
sources (SPS). We will start by looking at the basic criteria and demands
placed on single photon sources, as single photons are used extensively
in this thesis, for the realization of d-dimensional physical systems oth-
erwise known as qudits. This requires the understanding of how physical
systems of di�erent dimensions d (d={2, 3, 4}) can be implemented using
them.
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1.2.1 Single photon sources

The concept of photon has been one of the most discussed and hotly
debated issues in the history of physical science. The desire to better
understand the concept and the debate, has been raging on for decades
but even now people are probably as unsure and divided as they ever
were. Regardless of the conceptual disagreements, the concept of photon
as a quantum of energy hυ is essential to the quantum revolution. This
de�nition stems from the quantization of the electromagnetic �eld, which
necessitates the presence of an elementary excitation of a single mode of
discrete energy, hence a photon [10]. As this is an experimental thesis
that deals in length with the creation and collection of single photons
in addition to the use of these photons as �ying particles to transmit
quantum information, the words of Roy Glauber are probably su�cient
for our purpose: "A photon is what a photodetector detects" [11].

It was brie�y introduced before that the use of quantum resources can
potentially enhance information processing capabilities well beyond clas-
sical means. Optical photons have been shown to be ingeniously capable
for the realization of such quantum resources due to their information
encoding, transfer and manipulation characteristics. In reality, the use
of photons or single photon sources more speci�cally extends beyond the
realm of quantum information technologies and they have proven use-
fulness in a range of diverse modern day applications such as remote
sensing and medical sciences [12; 13]. From a quantum information per-
spective, deterministic on demand generation of indistinguishable single
photons is an ideal resource for applications as quantum sensing, quan-
tum metrology and quantum information processing.

An ideal single photon source deterministically emits indistinguish-
able single photons on demand without the possibility of multiphoton
emission, is highly photostable with exactly de�ned spatial and spectral
characteristics. Such a source should have a sub-nanosecond lifetime and
must be highly polarized in both emission and absorption [14]. An ideal
single photon source (SPS) is extremely hard to realize in practise due
to the above stringent requirements, but suitable candidates that meet
some key criteria have been realized [12; 13; 15]. The �rst experimental
realization of a single photon emission was demonstrated by Kimble et al.
in 1977 using sodium atoms [16] and since then a number of demonstra-
tions employing di�erent approaches have been presented. Examples
of systems that have demonstrated similar characteristics include sin-
gle molecules [17], single atoms, trapped ions [18], arti�cial atom like
structures as quantum dots (QDs) [19] and defect centers in solid state
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materials as diamond [20] and silicon carbide [21]. The single photon na-
ture of these sources is con�rmed by using a Hanbury Brown and Twiss
(HBT) con�guration to measure the second order correlation function
value that can con�rm the presence of a single photon emitter.

Alternate approaches for single photon sources include the heralded
single photon sources, which although di�erent in mechanism to the
above systems, are commonly used as a robust single photon source in
quantum communication protocols. One such source of single photons
is used in the experiments performed in this thesis and an overview of
which is provided in the next section.

1.2.2 Heralded single photon source

A heralded single photon source from entangled pair of photons gen-
erated using spontaneous parametric down conversion (SPDC) in non-
linear beta barium borate (BBO) crystals has been used in the experi-
ments covered in this thesis. Such non-linear crystals have proven to be
quite e�cient for generating entangled photon pairs [22]. In SPDC, a
high energy pump photon incident on a non-linear crystal may result in
the emission of two photons of lower energies, commonly known as the
signal and idler photons. This conversion of pump laser photon into
down converted photons occurs spontaneously, as the name indicates,
and strong correlations between the signal and idler photons (energy,
momentum, polarization) exist due to energy and momentum conserva-
tion. Such sources based on SPDC can produce entanglement directly
in the crystal and entangled photons of the same frequency can also be
produced.

The laser source used is a Coherent Ti:sapphire femtosecond laser
pulsed at 80 MHz with a pulse width of 140 fs and an average power of
3.3 W at 780 nm, translating into an average power of 0.3 MW in each
pulse. The laser is then frequency doubled to 390 nm using a bismuth
triborate (BIBO) crystal with an average power of around 1.4 W for the
frequency doubled UV beam. This extraordinarily 1 polarized UV beam
(390 nm) is then used as the pump beam for the BBO crystal to produce
degenerate down converted infrared photons (780 nm).

There are two main types of the SPDC processes: type-I where both

1In birefringent materials, the refractive index depends upon the polariza-
tion and the direction of propagation of the light beam. An incident beam is
polarization split into two beams, i.e., extraordinary and ordinary polarized.
For normal incidence, the extraordinary polarized light does not obey Snell's
law and deviates from the straight path inside the material [23].
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the down converted photons have ordinary polarization 1 and have the
same polarizations or type-II where one photon is ordinary polarized and
the other is extraordinary polarized resulting in orthogonal polarizations
of the down converted photons. We have used type-II SPDC where
polarization entanglement between photons is created within the crystal
due to a blending of the orthogonal polarizations and the energies of
the emitted photons are degenerate. Fig. [1.2] shows the non-collinear
con�guration of the type-II SPDC process where the two emitted cones
of orthogonally polarized photons intersect at two points.

Figure 1.2: Non-collinear type-II SPDC con�guration leads to entangled
photon pairs at the intersection of the two cones. Reproduced from [23].

It has already been mentioned that we consider the degenerate case
where the energies of emitted photons are the same. In addition, for a
small thickness of the non-linear crystal the photons are also indistin-
guishable in timing of their arrival as they were created together. At
these intersection points, it is only the polarization of the two photons
that is not de�ned as they could be coming from any of the two inter-
secting cones, resulting in, e.g., a polarization entangled Bell state |ψ+〉.

|ψ+〉 =
1√
2

(|HV 〉+ |V H〉) (1.12)

A polarization measurement at one of the crossings can only reveal
the polarization state of the photon but as these photons are entangled
with orthogonal polarization such a measurement also directly reveals
the polarization state of the second photon at the other crossing. Such
a source of entangled pairs of photons can be employed as a heralded
single photon source where the idler photon can be used as a trigger and

1For normal incidence, the ordinary polarized light is the one that obeys
Snell's law and continues its motion in a straight path inside the material.
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the detection of this idler photon using a single photon detector heralds
the presence of the other photon which can now be used in experiments
requiring single photons. These signal photons are then made to pass
through a narrow band interference �lter of bandwidth ≈ 3 nm. Such
a spectral �ltering is necessary to increase the coherence length of the
photons, which depends upon the spectral range of the �lter used. After-
wards, the photons are coupled to single mode �bres (SMF) to obtain a
well-de�ned spatial mode. This is possible as SMF are optical �bres with
a very small core (≈ 5 µm diameter) surrounded by a larger cladding of
lower refractive index and are commonly used for distributing photons
between two points. Light guiding is made possible by total internal
re�ection (TIR) and for a speci�c incident wavelength and polarization
they can only guide a single spatial propagation mode. Hence a SMF
acts as a mode �lter providing photons of exactly de�ned spatial mode
at the �bre output.

1.2.3 Implementation of a qudit

We begin by considering the implementation of a qubit before moving
on to implementing higher dimensional quantum systems. A quantum
bit can be implemented using any quantum system of dimension two.
We will use single photons generated through spontaneous parametric
down conversion (SPDC) in non-linear crystals for experimentally real-
izing qubits. Using photons as a candidate for implementing qubits is
attractive due to their weak interaction with the environment which re-
duces the decoherence e�ect. A photon's spin or polarization can hence
be used as a two dimensional quantum system for implementing a qubit.

1.2.4 Di�erent encoding schemes

Using a photon's polarization is probably the most commonly used and
yet the simplest method for representing a two level system. The sim-
plest way to demonstrate a two level is to use the two most commonly
known orthogonal polarization states, horizontal |H〉 and vertical |V 〉.
The state vectors |H〉 and |V 〉 are the eigenvectors of the σz operator
and a qubit basis is de�ned using |0〉 ≡ |H〉 and |1〉 ≡ |V 〉. In a simi-
lar manner, eigenstates of the observable σx, which are ±45◦ polarized
photons de�ned by superpositions |±〉 = 1√

2
(|H〉 ± |V 〉), and observ-

able σy, which are circularly polarized photons de�ned by superpositions
|L/R〉 = 1√

2
(|H〉 ± i|V 〉), are also used for the implementation of qubits.

One can clearly see that the qubit basis de�ned by state vectors |H〉 and
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|V 〉 is the default basis and all other states can be represented using this
basis.

Although commonly used, polarization implementation is not the
only way to implement a qubit. Another known method employs the
use of two di�erent, well-de�ned and distinguishable spatial paths a and
b. Using this spatial approach of two di�erent paths, a qubit can be
de�ned by choosing |1〉 ≡ |a〉 and |2〉 ≡ |b〉 where the former indicates
the presence of a photon in path a and the latter indicates the presence of
a photon in path b. Similar to the polarization approach of implementing
qubits, superpositions can also be introduced between the two physical
paths.

Previously, we discussed how two level systems de�ned by photon's
polarization or di�erent spatial paths can be used for implementing
qubits. As work in this thesis additionally involves the use of quantum
systems of higher dimensions as well, it is important to realise quantum
systems that can be used for the task. For a ququart (d = 4) state, the
above two methods can be combined and the two spatial and polarization
degrees of freedoms can be used for implementing a physical system of
d = 4 whereas for a physical system of dimension d = 3 (namely qutrit),
single photons can be used in a three spatial path encoding scheme. The
qutrit encoding scheme is implemented by using the two spatial modes of
three polarization beam splitters (PBS). The detailed encoding schemes
for preparation of these states will be covered later on when dealing with
individual experiments.
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2. Random Access Codes (RACs)

Random Access Codes, commonly known as RACs, belong to a class
of communication tasks where a RAC, generally, represents encoding a
number of bits into a single bit and any one of the initial bits can be re-
covered with a certain probability of success. RACs could also be viewed
in a context, where a given user (Alice) possesses some information (a
bit string) and another user (Bob) is interested in any arbitrary subset
of information (any bit) held by Alice despite limited one way commu-
nication between them. RACs are traditionally characterized as n 7→ m,
which implies that n bits are encoded into m bits and any one of these
n bits can be recovered with an average success probability p.

In terms of implementation through quantum resources, RACs can
be classi�ed into two variants: quantum communication random access
codes (QRACs) and entanglement assisted random access codes (EAR-
ACs). In the QRACs, quantum systems are prepared and communi-
cated from one party to the other through a quantum channels whereas
in EARACs, quantum entanglement is shared between the participants
through a classical channel. These two types of quantum RACs have
proven to be equally e�cient and advantageous in many scenarios. How-
ever, there do exist speci�c scenarios where one type has been shown to
be better suited as compared to the other. In the context of this thesis,
all the presented work has been done using the QRACs variety where
the implementation is done in a prepare and measure scenario.

In the one way communication scheme, RACs could be both classi-
cal or quantum depending upon the choice of communication used. For
a given input string of classical bits, consider a scenario where only a
single bit (qubit) is used for encoding the input string, i.e., m = 1 (this
is the case employed throughout this thesis). In the classical case, Alice
encodes her input bit string into a single bit, which is consequently sent
to Bob who then tries to recover any of the input bits with either an av-
erage success probability p or a worst case probability p depending upon
the situation of interest. In any case, the success probability should be
greater than 1/n, which is the most trivial scenario where Bob just tries
to guess the sent bit. The quantum counterpart of this RAC employs
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a single qubit into which all the input bits are encoded. Bob receives
this qubit, performs a measurement on it and tries to recover the bit of
interest. The choice of Bob's measurement setting depends upon the bit
that he is trying to recover.

The main advantage of QRAC over its classical counterpart is that
once Bob has performed a measurement on the qubit, to recover the bit
of interest, no more information can be extracted from it. This does
not hold for the classical RAC though where the recovery of a single bit
implies that Bob can essentially recover all of the bits in the input bit
string.

The idea of QRAC was initially presented, almost four decades ago,
in early 1980s [24] but it has only been recently (in the last �fteen years)
that they have been studied extensively. QRACs have found important
applications in a range of tasks including machine learning [25�27], in
the interest of quantum communication complexity [28] and particularly
network coding [29], locally decodable codes [30] along with meaningful
applications in quantum information processing (QIP). The QIP applica-
tions cover areas such as semi-device independent (SDI) protocols based
generation and certi�cation of truly random numbers [31; 32], tests of
non-classicality, tests of classical and quantum dimensions of a system
as well as semi-device independent quantum cryptography [33]. Results
from QRACs have been applied to quantum state learning, super quan-
tum resources [34] and links between QRACs and foundations of quan-
tum mechanics [35] have also been established. Furthermore, QRACs
realized by means of entanglement [36], as described above, have found
usefulness in real life games [37].

2.1 Commonly known RACs

The �rst two published articles (I and II) produced during this thesis deal
with QRACs of dimension d = 4. We will �rst begin with 2-dimensional
QRACs for ease of understanding, before building onto the higher level
RACs (d = 4) and their optimal strategies required to acquire the highest
success probabilities. For this purpose, we will consider both classical
and quantum scenarios.

2.1.1 The 2 7→ 1 RAC

The simplest known RAC is the 2 7→ 1 variant where n = 2 bits are
encoded into a single bit. Alice has an input string of 2 bits, x = x1x2,
which she encodes into a single bit. She is only allowed to communicate
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this single bit to Bob, who could be interested in any one of the bits
in Alice's string. Firstly, we will analyse the optimal classical strategy
that Alice could use to obtain the most e�cient scenario of a classical
RAC, followed by the presentation of its quantum analogue. Later on a
natural performance comparison will be made between the classical and
quantum cases.

For the 2 7→ 1 code, the best classical strategy that Alice could
employ is to send the same bit all the time. Let x1 be that bit in this
case. The highest classical success probability that Bob can obtain in
this case is

pC27→1 = 3/4. (2.1)

This is straight forward as every time Bob is interested in x1, he will
recover it and for every other time when he is interested in x2, he will
have to guess its value. This results in a total classical success probability
of pC = 3/4.

On the other hand, in the 2 7→ 1 QRAC, there are 2n possible val-
ues (four in this case) for Alice's input string and she uses a two level
quantum system to represent any of these inputs.

|ψx1x2〉 =
1√
2

(
|0〉+

(−1)x1 + i(−1)x2√
2

|1〉
)

(2.2)

Whereas Bob uses two mutually orthogonal pairs of antipodal Bloch
vectors, as measurement bases (M1 andM2), to recover his bit of interest.
If M1 and M2 are the measurements along x and y axes, respectively,
with corresponding Bloch vectors υ1 = (±1, 0, 0) and υ2 = (0,±1, 0),
then the measurement bases [38] are

M1 = { 1√
2

(
1
1

)
,

1√
2

(
1
−1

)
}

M2 = { 1√
2

(
1
i

)
,

1√
2

(
1
−i

)
}

(2.3)

For a given input string x and encoding states |ψx1x2〉 in eq. 2.2,
Bloch state vectors of the encoding states are given as

r (x) =
1√
2

 (−1)x1

(−1)x2

0

 (2.4)

From this geometric consideration, the used encoding states are the ver-
tices of a square 1√

2
(±1,±1, 0) drawn in the unit circle on the xy plane as
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shown in Fig. 2.1. These encoding states are symmetrically distributed
at the equator, on the surface of the Bloch sphere. They are the best
option considering that all the encoding points should be as far as pos-
sible from the two planes that are orthogonal to the x and y axes and
cut the sphere into four parts [38]. This is vital to maximize the worst
case success probability.

Figure 2.1: Bloch sphere representation of 2 7→ 1 (a) and 3 7→ 1 (b)
QRACs. Reproduced from [38].

In order to recover an input bit of interest, Bob performs a measure-
ment using the corresponding measurement basis. He measures in M1,
if he wants to recover x1 or in M2 basis, if he wants to recover x2. Bob's
success probability always remains the same and is independent of the
measurement he performs or the encoding state he receives.

pQ27→1 =
1

2

(
1 +

1√
2

)
≈ 0.854 (2.5)

2.1.2 The 3 7→ 1 RAC

As in the previous case of a 2 7→ 1 RAC, the success probability for a
classical random access code 3 7→ 1 is again

pC37→1 = 3/4 (2.6)

albeit with a more elegant strategy (majority encoding scheme, will be
explained later) than the prior case. The 3 7→ 1 QRAC is a general-
ization of the 2 7→ 1 code introduced in the previous section and was
�rst introduced by Chuang [25]. In this class of RACs, three mutually
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orthogonal pairs of antipodal Bloch vectors are used instead of two. Al-
ice has an input string of three bits, x = x1, x2, x3, and the additional
measurement basis available to Bob in this case is

M3 = {
(

1
0

)
,

(
0
1

)
} (2.7)

where the third pair of antipodal Bloch vector is υ3 = (0, 0,±1).
There are eight possible values to Alice's given input string which

are encoded into 8, two level, quantum states |ψx1x2x3〉. These encoding
states arise from the three planes that are orthogonal to the x and y
axes and cut the Bloch sphere into eight parts. The Bloch vectors of the
encoding states for the given string are

r (x) =
1√
3

 (−1)x1

(−1)x2

(−1)x3

 (2.8)

Hence, the optimal encoding states |ψx1x2x3〉 are symmetrically dis-
tributed on the surface of the Bloch sphere and conform with the vertices
of a cube, 1√

3
(±1,±1,±1), as drawn in the unit circle on the xy plane,

Fig. 2.1. The optimal encoding states are

|ψx1x2x3〉 = α|0〉+ β|1〉 (2.9)

Where the coe�cients α and β are given as [25]

α =

√
1

2
+

(−1)x3

2
√

3

β =
(−1)x1 + i(−1)x2√

6 + 2
√

3(−1)x3

(2.10)

Similar to the 2 7→ 1 code, Bob measures in M1, M2 or M3 basis to
recover the x1,x2 or x3 bit. Again, Bob's success probability remains the
same in all scenarios and is independent of the measurement he performs
or the encoding state he receives.

pQ37→1 =
1

2

(
1 +

1√
3

)
≈ 0.789 (2.11)

2.1.3 Quantum versus classical random access codes

As discussed previously, the optimal strategies for classical random access
codes lead to a success probability of pC = 3/4 in both types of random
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access codes. Whereas, the success probability of a quantum random
access code is ≈ 0.854 in the �rst case and ≈ 0.789 for the second. Hence,
in both classes of random access codes, it can be seen that the quantum
random access code outperforms its classical counterpart. The apparent
advantage of this quantum resource over its classical counterpart can be
quanti�ed by calculating the ratio of the quantum to classical success
probability (pQ/pC).

For the 2 7→ 1 RAC, the quantum advantage is ≈ 1.138 and for the
3 7→ 1 RAC, the quantum advantage is ≈ 1.052. The 3 7→ 1 advantage
is comparatively lower than the 2 7→ 1 but still clearly emphasizes the
superiority of quantum random access codes over classical codes.

2.2 High-level RACs

The previous section provided a brief outlook and a basic introduction to
the commonly known RACs, where the physical systems used for encod-
ing information were two dimensional systems. Here we shall approach
random access codes based on physical systems of dimensions greater
than two. This generalization enables RACs to �nd additional appli-
cations otherwise not possible in the original context of RACs. This
expansion of the conventional RACs is introduced as
Any collaborative task, where a set of parties attempt to randomly access

some subset of data held by another set of parties, despite limited one

way communication between them, is called a task of random access cod-

ing [9].
Such an expansion makes it possible to �nd implementations in numer-
ous schemes in QIP. One such example is the scenario of multiparty
RACs, where both the input and output data sets are subjected to cer-
tain probability distributions. Other examples include RACs with ar-
bitrary communication restrictions such as asymmetric encodings and
RACs employing high level communication. Initially, despite all these
potential advantages, other than the initial steps regarding RACs of high
level communication [39], where QRACs of the form (d + 1)(d) 7→ 1 for
d = 2, .., 8 are presented, high level RACs had not seen much attention.
Since the publication of our article about the realization of 4-level 2 7→ 1
QRAC (presented in detail in later sections), the higher level RACs have
received more attention. In one of these succeeding articles [40], the opti-
mality of majority encoding scheme for classsical RACs is proven for any
d, which was an unproven assertion in our case. This will be elaborated
on in the upcoming sections.

In the present scenario, Alice has access to an input string of n d-

18



levels, x = x1, x2, ..., xn and each individual d-level is given as xi =
{0, ..., d− 1}. Bob, on the other hand, has access to settings b, b ∈
{1, ..., n}, which he uses to indicate the d-level of his interest, xb. Similar
to the previous cases, Alice can only communicate one d-level to Bob.
The notation used for this high level RAC is thus n(d) 7→ m and pn,d
is the average (or worst case) success probability for Bob to recover
his preferred d-level. In the succeeding sections, we shall look at the
characteristics of high level classical and quantum random access codes
of arbitrary dimensions d. We shall also consider the success probabilities
achieved for each and a subsequent analysis of results, observing whether
a quantum advantage over classical RACs is possible or not. In case of
a higher quantum success probability, we shall also try to quantify this
quantum advantage but, at the same time, in the scope of this thesis,
we will restrict ourselves to scenario of RACs for n = 2. All the topics
covered in the coming sections are presented in article I [41].

2.2.1 Classical RACs

The aim here is to establish classical RACs of the given form n(d) 7→ m
and present an optimal classical strategy to obtain the average classi-
cal success probability for these RACs. A classical approach based on
these RACs makes use of pure strategies to estimate the performance
of such codes. Such pure strategies are deterministic in nature as the
resulting outcome is either correct or incorrect. In this pretext, a de-
terministic strategy is considered optimal if it yields correct outcomes
for the maximum number of n2n inputs possible. In a pure strategy,
Alice uses an encoding function E, E : {0, ..., d− 1}n → {0, ..., d− 1},
to encode her input string of n d-levels into a single d-level, which is then
communicated to Bob. Bob proceeds by using a decoding function Db,
Db : {0, ..., d− 1} → {0, ..., d− 1}, to decode the d-level communicated
by Alice with respect to xb.

For classical RACs with d = 2, it has been shown that the optimal
classical strategy for n 7→ 1 RACs employs a majority encoding function,
for encoding Alice's input string, and an identity decoding function used
by Bob [38]. A generalization of this could easily be seen from the
encoding and decoding functions used above, E and D, by Alice and
Bob respectively. The operation of both the encoding and decoding
functions can be presented as Db(E(x)). Therefore, this joint operation
of the two functions can be regarded as a single function and allows Bob
to perform identity decoding, Db(E(x)) = E, provided that the range of
Db and E are the same.
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For the classical random access codes based on high level commu-
nication, the majority encoding and identity decoding strategy is im-
plemented as follows. Alice studies her input string of n d-levels and
observes the number of times a given d-level occurs. She stores this in-
formation in a frequency table, where she reports how frequently a given
d-level occurs in x, and then outputs the consequent d-level that occurs
the most number of times. The frequency table, as the name suggests,
only contains the occurring frequency of a given d-level and is indepen-
dent of their values. For a given input string x, the frequency table
can also be mathematically viewed as an integer partition of n and all
of Alice's dn possible strings are uniquely associated with a particular
partition of n. This set of all positive integer partitions of n is denoted
as X, where Xj is the jth partition and |X| is the total number of all
partitions of n [9].

Making use of the optimal classical strategy involving majority en-
coding, Alice's task is to �nd out the d-level that occurs most frequently.
This maximum frequency is represented as max{Xj}. The d-level with
the highest frequency is then outputted to Bob, where Bob uses identity
decoding, to recover the d-level of interest with a success probability of
max{Xj}/n. The optimal average classical probability achievable for an
n(d) 7→ 1 RAC is given as [41]

pCn,d =
1

ndn

|X|∑
j=1

max{Xj}NXj (2.12)

For the high level classical RACs, the cases for n = 2 and n = 3 are the
ones that we are interested in. The average success probabilities in these
two cases is computed to be [41]

pC2,d =
1

2

(
1 +

1

d

)
pC3,d =

1

3

(
1 +

3

d
− 1

d2

) (2.13)

The classical success probability calculated for both n = 2 and n = 3
converges to 1

n as d → ∞. It is pertinent to mention here that the
success probability 1

n corresponds to the simplest of strategies, where
Bob just guesses which of the n d-levels were communicated to him.
Now, we shall proceed to look at the equivalent QRACs of high level
communication, for n = 2. A performance comparison with the classical
RACs is presented in Appendix section 7.1.

20



2.2.2 Quantum RACs

In the case of 2(d) 7→ 1 QRAC, Alice has an input string of two d-levels,
x = x1, x2, and each individual d-level is given as xi = {0, ..., d− 1}.
The given string is encoded into a single quantum d-level, which is then
communicated to Bob. Meanwhile, Bob uses two mutually unbiased
bases (MUB) [42; 43] as his measurement options to recover the d-level of
his choice. The two MUBs used by Bob are otherwise commonly referred
to as the Computational {|l〉}l and the Fourier basis {|el〉}l given as

|el〉 =
1√
d

d−1∑
k=0

ωkl|k〉 (2.14)

where ω = e2πi/d is the root of unity. Bob performs a measurement in
the {|l〉}l basis if he is interested in x1 or in {|el〉}l, if he is interested in
recovering x2. The success probability for this family of QRACs is thus
represented as pQ2,d. For the given input string of 2 d-levels, Alice has
available to her d2 possible encoding states. For the general encoding
states |ψx1x2〉, it is but logical to begin by considering the encoding of
the string x0x1 = 00 into the state |ψ00〉, which is given as

|ψ00〉 =
(|0〉+ |e0〉)

N2,d
(2.15)

N2,d is the d-dependent normalization and is given as

N2,d =

√
2 +

2√
d
. (2.16)

All the other encoding states are a generalization of the state |ψ00〉
and in order to de�ne the other possible encoding states of Alice, a
generalization of Pauli operators σx and σz is required. These generalized
Pauli operators are de�ned as Xd and Zd, where Xd is the generalized
form of σx and Zd is the generalized form of σz. These generalized Pauli
operators are given as

Xd =

d−1∑
k=0

|k + 1〉〈k|

Zd =
d−1∑
k=0

ωk|k〉〈k|

(2.17)
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The operation of Xd operator is analoguous to σx, which acts as a
bit �ip when acting on a given state |s〉. This implies that the operation
of Xd will raise the state from |s〉 to |s+ 1〉, where the sum is modulo d.
Similarly, the operation of Zd is analoguous to σz, which �ips the sign of
a given state |s〉. This operation is identical to the phase rotation of the
state in two dimensions, which is given as eiπ. Hence the operation of
Zd rotates the phase of any given state |s〉 with ωl. The generalized en-
coding states |ψx1x2〉 can be de�ned using with the help of these unitary
operators, Xd and Zd [9].

|ψx1x2〉 = Xx1
d Zx2d |ψ00〉 (2.18)

which can be expanded further such that

|ψx1x2〉 =
1

N2,d

|x1〉+
1√
d

d−1∑
j=0

ωjx2 |j + x1〉

 (2.19)

This is the generalized encoding state that is used to represent all
possible d2 values of Alice's input string. As described before, when
communicated to Bob, Bob measures in the computational basis {|l〉}l
to recover x1 or in the Fourier basis {|el〉}l to obtain x2. In the scenario
of a measurement in {|l〉}l basis, the resulting measurement outcome is
l and the probability distribution PZ of this outcome is given as

PZ(l) ≡ |〈l|ψx1x2〉|
2 =

1

N2
2,d

∣∣∣∣∣δl,x1 +
ωx2(l−x1)

√
d

∣∣∣∣∣
2

(2.20)

On the other hand, in the scenario of a measurement in {|el〉}l basis,
the resulting probability distribution PX of measurement outcome l is
given as

PX(l) ≡ |〈el|ψx1x2〉|
2 =

1

N2
2,d

∣∣∣∣ω−lx1√
d

+ ω−x1x2δx1,l

∣∣∣∣2 (2.21)

Irrespective of the measurement basis used by Bob or the encoding
state used by Alice, the quantum success probability depends upon the
recovery of the preferred d-level resulting in an outcome of x1 when
measured in computational basis or the outcome x2 when measured in
the Fourier basis. The success probability of Bob's outcome is given in
[41] as

pQ2,d =
1

2

(
1 +

1√
2

)
(2.22)
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From the above expression, one can deduce that the success probabil-
ity of recovering a given d-level, xi, remains the same and is independent
of the encoding state used by Alice or the measurement basis used by
Bob. Hence, this success probability is both an average and the worst
case probability. Additionally, as pQ2,d is always greater than 1/2, there-
fore, the QRAC is non-trivial for any d. Moreover, the quantum success
probability pQ2,d is greater than the classical probability pC2,d for d > 1,
which shows the advantage of these quantum resources over their clas-
sical counterparts. Furthermore, for d = 2, the success probability of a
standard 2 7→ 1 QRAC where pQ ≈ 0.854 is reproduced.

In section 2.1.3, we quanti�ed the advantage of quantum over clas-
sical RACs through the ratio pQ/pC . At the same time, while looking
at the quantum success probability in eq. 2.22 and the classical success
probabilities in eq. 2.13 for 2(d) 7→ 1 RACs, one can see that the maxi-
mum advantage in terms of di�erence in numbers, pQ2,d−p

C
2,d, is achieved

for d = 4 when the quantum success probability is 1
8 times larger than

its classical counterpart. An experimental implementation and test of
such a 2(4) 7→ 1 QRAC is presented in detail in the next section. In 7.1,
a comparison of the high level classical RACs with the (d + 1)(d) 7→ 1
QRACs of [39] and the advantage of using n(d) 7→ 1 QRACs based on
high level systems is provided.

2.3 Experimental implementaion of 2(d) 7→ 1 QRACs

In this section, we will look at the experimental demonstration of a
2(4) 7→ 1 quantum random access code in the laboratory. In this high
level QRAC of dimensions four, Alice has available to her an input string
of two 4-levels x1, x2, where xi ∈ {0, 1, 2, 3}, which are encoded into
a single 4-level quantum system before being communicated to Bob.
Bob, has access to two measurement bases, namely the Computational
(eigenbasis of Z) and Fourier (eigenbasis of X) bases and depending upon
the 4-level system of his interest he performs a measurement in either of
these two bases. The success probability in a random access code task
depends upon upon his ability to successfully recover the 4-level system
of his interest.

2.3.1 State preparation

Before we proceed it is important to understand how are we going to
implement these 4-level physical systems using single photons. Such a
scheme was brie�y presented in section 1.2.4 where it was mentioned
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that physical systems of dimensions four can be realized by utilising
the polarization and path degrees of freedom of single photons. This is
possible as by using the horizontal (|H〉) and vertical (|V 〉) polarization
modes along with two spatial modes (|a〉 and |b〉) of single photons we
can de�ne the following four basis states, |1〉 ≡ |H, a〉, |2〉 ≡ |V, a〉, |3〉 ≡
|H, b〉 and |0〉 ≡ |V, b〉. This is usually done by using a combination of
half-wave plates (HWPs) and a polarization beam splitter (PBS). Wave
plates are optical components made of a birefringent material (quartz)
and are one of the most important tools for manipulating a photon's
polarization. The polarization state can be transformed to another state
through the suitable rotation of a wave plate where this rotation intro-
duces a phase shift (φ) between the horizontal and vertical polarizations
of photons. Depending on the value of the introduced phase (φ), the
wave plate can either be termed as a HWP (φ = π) or a QWP (φ = π

2 ).
In this thesis, both HWPs and QWPs are used for polarization control
in the performed experiments. A PBS cube on the other hand is an op-
tical component which splits the incoming light into two separate parts
based upon its polarization state as the transmission and re�ectance is
polarization dependent. The PBSs used in the scope of this thesis are in
a cube form and they allow the horizontal polarization to pass through
them while re�ecting the vertical polarization. This provides an e�cient
way to map polarization states into paths as the horizontal and vertical
polarizations are split into di�erent paths when passing through a PBS.
In this con�guration, a PBS performs a measurement in the computa-
tional basis as the output ports correspond to state vectors |H〉 and |V 〉.
Therefore, information can then be encoded using the four bases states
described above and a ququart state can be written as

|ψ〉 = α|H, a〉+ β|V, a〉+ γ|H, b〉+ δ|V, b〉 (2.23)

Now that we have presented a method of implementing a 4-level
physical system with single photons, we will present how we used this
two polarization two path scheme to prepare the dn = 16 encoding states
of Alice. To begin with, we required an initial state of the form

|ψ〉 = a|x〉 ± b|y〉 ± b|z〉 ± b|w〉 (2.24)

where x, y, z, w = {1, 2, 3, 4} and a2 = 0.75 and b2 = 0.083.
For encoding this state into a two path and two polarization scheme,

a HWP (θ1) and a PBS were �rst used to control the population for
each path followed by the use of HWP (θ2) and HWP (θ3) in the two
paths to control the population between the di�erent polarization states.
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By using these optical components, we achieved the right populations in
each path but not the desired phases. This however can be taken care
of by the use of phase shifters PS(φ) that can introduce an arbitrary
phase shift between the two paths. In our case, the required phase shift
between the two paths is either 0 or π.

In Fig. 2.2, the state preparation box shows this con�guration of
HWPs and PBS used to prepare the 4-level physical system with single
photons.

Figure 2.2: Experimental implementation of four-level encoding QRACs.
The state preparation box allows to prepare any of the 16 input states
through the appropriate orientation angles θi of the three HWPs. Mirrors
(M) mounted on picometer translation stages can be moved in and out
of the photon path enabling a measurement choice between the computa-
tional and Fourier bases.

After the �rstHWP (θ1) and PBS, we have cos(2θ1)|V, a〉+ sin(2θ1)|H, b〉
whereas after the HWPs and PSs in the two paths the state can be writ-
ten as

|ψx1x2〉 = cos(2θ1)× cos(2θ2)|H, a〉 + cos(2θ1)× sin(2θ2)|V, a〉
+ eiφ[sin(2θ1)× sin(2θ3)|H, b〉 − sin(2θ1)× cos(2θ3)|V, b〉]

(2.25)

By suitably adjusting the orientation angles θi of the three HWPs, Al-
ice can prepare any of the 16 encoding states |ψx1x2〉 where x1, x2 ∈
{0, 1, 2, 3}. The θi settings corresponding to all the three HWPs are
shown in table 2.1.
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2.3.2 Experimental setup

The experimental setup used for this 4-level encoding QRACs is shown
above in Fig. 2.2. The Source represents the heralded single photon
source presented above in section 1.2.2. The coincidence counts between
the signal and idler photons are counted using a homebuilt FPGA based
multichannel coincidence unit with a coincidence window of 1.7 ns. We
characterized our Source to make sure that the ratio between the co-
incidence photon counting due to single-photon and multiphoton pair
emissions is below 0.1%. Before being sent to the state preparation box,
the single photons are passed through a polarizer oriented such that the
photons going to the setup are horizontally polarised. The state prepa-

ration box depicts the appropriate placement of HWPs, PBS and PSs to
prepare all 16 encoding states available to Alice in this 2(4) 7→ 1 QRAC.
Bob's aim on the other hand is to successfully recover the 4-level he is
interested in. For this purpose, he chooses between two measurement set-
tings, a measurement in the computational basis (Z basis) or the Fourier
basis (X basis). The implementation of these two measurement choices
can be seen in Fig. 2.2 where they are represented in di�erent boxes
labelled as Z basis or X basis. After the state preparation box, the single
photons travel in the spatial modes (a and b) of the PBS and are then
either sent to, after re�ection from two mirrors M , interfere at a non-
polarising 50 : 50 beam splitter (BS) where they are then measured in
the X basis or are allowed to pass through to the Z basis measurement
boxes. The choice of a speci�c measurement setting is implemented by
the use of mirrors M that can be moved in or out of the photon path by
the use of picometer motorized translation stages.

2.3.3 Measurements and results

A measurement in Z basis is simpler of the two measurements where
a PBS alone in the measurement box performs a measurement of the
observable σz as explained earlier in the functionality of a PBS. In both
the Z basis boxes, the number of photons arriving at the two output
ports of the PBS are then recorded by the use of two single photon
silicon based avalanche photodiodes (APDs) (Dzi). The APDs used in
this experiment have an e�ective detection e�ciency ηd = 55%, dark
counts rate Rd ≈ 400/sec and a dead time of 50 ns. Here, dead time
is the time during which the bias voltage across the p-n junction of the
device is below the breakdown level and no photon can be detected.

The measurement in the Fourier basis requires the application of a
quantum interference between the photons travelling in the two spatial
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modes of the PBS at a 50/50 BS, which splits light into equal trans-
mission and re�ection components irrespective of its polarization state.
At both output ports of the BS, a con�guration of HWP and PBS is
used to perform a measurement of the σx observable or in other words
a measurement in the X basis. For this purpose the HWPs in the mea-
surement box are set at 22.5◦ as this HWP setting leads to the projection
of a given state onto the eigenvectors of σx. Afterwards, photons arriv-
ing at the two output ports of both the PBSs in the X basis box are
recorded by the use of four APDs Dxi. All the probabilities needed for
the QRAC in each measurement basis can be calculated from the num-
ber of detected photons by the APDs. This is shown below in table 2.1,
where the success probabilities in both measurement bases are obtained
from the APD detected counts for all 16 states communicated by Alice.

It is important to mention here that the total number of detected
photons in each experimental setting was on average ≈2500/sec and the
measurements were performed for a total of 10 secs for each experimental
setting.

Along with table 2.1, in the appendix section 7.2 a detailed account of
measurement of all the 16 states for both measurement bases is presented
along with the obtained QRAC probabilities in each individual detector
setting corresponding to the initial state shown in eq. 2.24. Quantum
mechanics predict that, in the case of an ideal experiment, the maximum
success probability that can be obtained for a 2(4) 7→ 1 QRAC is pQ =
0.75. On the other hand, the maximum classical success probability is
pC = 0.625. Considering the fact that experiments performed in the lab
are not ideal and are greatly a�ected by various sources of error. Such is
the case for this experiment as well where the major contributing sources
are the systematic errors due to the intrinsic imperfections of the optical
components used in the experimental setup. These include mostly the
imperfections in HWPs and non-ideal splitting ratios of PBSs and BS
used in the setup. Another source of errors is the poissonian counting
statistics of the detected photons. The experimental results presented
here yield an average quantum success probability of 0.754± 0.038 and
demonstrate a clear violation of the classical bound. Therefore they
are in good agreement with the results predicted by quantum theory,
indicating a successful implementation of a 2(4) 7→ 1 QRAC.
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Table 2.1: The orientation of the three half wave plates θi (with
i = 1, 2, 3) and the phase shift PS (φ) for the 16 quantum states ψij .
The quantum success probabilities PZexp and P

X
exp for measurements in the

computational and Fourier basis respectively. Reproduced from [41].

ψx1x2 θ1 θ2 θ3 φ PZexp PXexp
ψ00 12.05 22.5 -9.22 0 0.747± 0.036 0.752± 0.038
ψ01 12.05 22.5 -9.22 π 0.748± 0.036 0.774± 0.038
ψ02 12.05 -22.5 9.22 0 0.749± 0.036 0.752± 0.039
ψ03 12.05 -22.5 9.22 π 0.753± 0.036 0.713± 0.039
ψ10 12.05 22.5 -35.78 0 0.766± 0.036 0.763± 0.038
ψ11 12.05 22.5 -35.78 π 0.767± 0.036 0.750± 0.038
ψ12 12.05 -22.5 35.78 0 0.764± 0.036 0.751± 0.039
ψ13 12.05 -22.5 35.78 π 0.764± 0.036 0.748± 0.039
ψ20 32.95 9.22 -22.5 0 0.755± 0.036 0.764± 0.038
ψ21 32.95 9.22 -22.5 π 0.761± 0.036 0.754± 0.038
ψ22 32.95 -9.22 22.5 0 0.786± 0.036 0.775± 0.039
ψ23 32.95 -9.22 22.5 π 0.786± 0.036 0.728± 0.039
ψ30 32.95 35.78 -22.5 0 0.742± 0.037 0.772± 0.038
ψ31 32.95 35.78 -22.5 π 0.743± 0.037 0.766± 0.038
ψ32 32.95 -35.78 22.5 0 0.732± 0.037 0.749± 0.039
ψ33 32.95 -35.78 22.5 π 0.733± 0.037 0.703± 0.039
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3. Applications of RACs

In the previous chapter, both classical and quantum random access codes
were introduced starting from the simpler and commonly known RACs
before building up to RACs of larger dimensions. A short yet concise
overview and introduction to these RACs was presented in this regard,
which was followed by an optimal performance comparison between clas-
sical and quantum RACs for both classes of RACs. The performance
comparison was made by comparing optimal success probabilities in each
scenario. The QRACs seemed to perform better than the classical RACs
and laid claim to the notion that quantum resources enhance informa-
tion processing beyond classical limitations and are important in QIP.
Moreover, this laid the ground work for analyzing and implementing such
QRACs in real time experiments so that steps can be taken for actual
realization of these claimed potential applications of QRACs.

A few applications of QRACs were brie�y touched upon in the previ-
ous chapter 2. Here, we will study two such utilizations that have shown
importance in a number of �elds. We will also discuss methods and
protocols necessary for their secure and practical implementation using
quantum resources. These applications include certi�cation of true ran-
dom numbers and test of non-classicality of a system and are perceived
important in the �eld of QIP. Articles II and III produced during this
thesis work covers in detail the protocols and quantum implementation
for both these applications. For this purpose, device independent (DI)
and semi-device independent protocols are also examined for an e�cient
yet secure practical utilization of these applications.
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3.1 Truly random numbers

The idea of randomness coupled with the desire and demand to generate
truly random numbers is a fascinating topic of interest. This intriguing
property of randomness and the ability to create randomness has found
its use in all walks of life from general everyday applications to the more
scienti�cally advanced ones. Purely random numbers have been utilized
in a wide range of applications as numerical simulations, lottery games,
biological systems, statistical sampling, completely randomized designs
and cryptography. In addition, many QIP tasks demand the ability
to produce genuinely random numbers as well, e.g., security of QKD
protocols is based on a random selection of the state preparation and
measurement [32]. True random numbers should be completely unpre-
dictable for any eavesdropper in any scenario [44]. Furthermore, recently
demonstrated landmark experiments for the loophole-free test of Bell's
theorem [45�47] depended greatly on fast random number generators
(RNGs) for generating random input bits for the consequent devices.
This would have otherwise been impossible without such fast RNGs for
space like separation of the relevant events in the Bell test.

The �rst and foremost question that arises at this point is how could
one go about generating numbers that are genuinely random in nature?
Modern day computers make use of carefully designed, sophisticated and
advanced algorithms to produce random numbers. Should random num-
bers generated by these dedicated algorithms be considered truly ran-
dom? or Is there an underlying argument that leaves this claim implausi-
ble? The underlying fact is that computers use deterministic algorithms
to produce random numbers and as a result, generated random numbers
are essentially pseudo-random numbers and not absolutely random. The
use of such a deterministic strategy along with an understanding of the
software generating random numbers renders the outcome fundamentally
predictable. Hence, by using strong and strict tests one can show that
such random numbers are indeed pseudo-random.

Randomness cannot be authentically classi�ed as genuine unless the
process used to create randomness is truly random in itself. This is
why most true random number generation protocols are based on unpre-
dictable physical processes [48�55]. This is where quantum mechanics
comes in handy as the concept of genuine randomness is a fundamental
feature of the physical reality of quantum systems and an innate property
of quantum theory. A simple yet e�ective demonstration of this is the
example of path-splitting of incident photons [48]. Consider a scenario,
where a single photon is made incident on a 50/50 beam splitter (splits
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incoming light into two equal intensity parts) followed by two detectors
(Da and Db) at each output port of the beam splitter. Every time, de-
tector Da records the detection of a photon event, it is termed as "0"
and "1" for the same in the detector Db. Quantum theory predicts that,
in both scenarios, the detection events in either arm are truly random
and independent of each other. Therefore, the resulting string of num-
bers generated by detection of photons in the two detectors is described
as truly random by quantum mechanics as the measurement process is
essentially random in itself. In this chapter, we will consider our exper-
imentally demonstrated 2(4) 7→ 1 QRAC from the previous chapter and
shall see how much randomness can be generated and certi�ed from such
a high-level code. It would also be interesting to compare the random-
ness generated from such QRAC against the results of commonly known
d = 2 QRACs.

3.1.1 Device and semi-device independent protocols

Device independence (DI), as the name indicates, is a scenario where an
application/protocol functions successfully on a range of devices regard-
less of the local hardware used in them. The concept arises originally
from computer science where it is used extensively such that a software
application is made to function on all platforms regardless of the local
hardware on which the software is used [56]. In simple words, it can
be considered as a scheme that bears no consideration to the internal
hardware and functionality of a device. The idea of device independence
can be extended to quantum information science where it may assure the
success of a protocol, irrespective of the device functionality, provided
that the assumption that no additional classical information leaves the
laboratory is upheld. How this is applied successfully is explained below
in coming paragraphs.

In quantum information context, the DI approach was �rst presented
in [57] and has been successfully implemented in the �eld of quantum
cryptography [58�60]. The same approach was later extended success-
fully to randomness generation protocols. It was �rst used by Colbeck
et al. [61; 62] to demonstrate a Greenberger-Horne-Zeilinger (GHZ) test
based randomness expansion protocol. Later on, Pironio et al. proposed
a true random number generation protocol certi�ed by the violation of a
Bell inequality [63]. In this context, the violation of Bell inequality acts
as a security parameter for randomness certi�cation. It was shown that
we need not make any assumptions about the way the devices work as
long as correlations that violate a Bell inequality are upheld. In this way,
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classical methods cannot be used for random number generation and the
certi�cation of randomness is provided by the Bell inequality violation.

True random number generation protocols must be based on unpre-
dictable physical processes and to certify whether a given set of random
numbers is truly random is no easy task. The devices that are used to
generate authentic random numbers must in turn operate according to
some intrinsically random process. In this scenario, the problem reduces
to the certi�cation that the device is performing as it is supposed to, at
least within reasonable limits [34]. Bearing this in mind, the device in-
dependent approach has attracted great attention recently as it provides
a platform for all involved parties to establish the required parameters
for randomness certi�cation without making any assumptions about the
inner functionality of the devices used. This is important as the inter-
nal working of a device could be described using a local hidden variable
model. Therefore, one can not be sure if the device is performing as it
is supposed to and one needs to assume that the parties have complete
control over the state preparation and measurement devices.

In the device independent protocols for randomness generation and
certi�cation, the experiment consists of a number of rounds. In each of
these rounds, a quantum state is prepared and is subjected to a mea-
surement. Most of these experimental rounds are used for generating
randomness whereas a few are used for the estimation of the security
parameter (violation of bell inequality). In each individual round, the
involved parties generate an input that corresponds to the choice of mea-
surement setting and then observe the resulting outcome. This is in
principle very similar to performing a Bell test. It is obvious that if the
parties are interested in generating more randomness than what they en-
ter, their input settings cannot be random for every round. In fact, the
input setting is usually kept the same for all the randomness generation
rounds but is chosen randomly for all the security parameter estimation
rounds. The total amount of randomness generated is then estimated
from the violation value.

As the DI protocols rely heavily on the violation of a Bell inequal-
ity and this requires the involved parties to share entangled states. This
makes the implementation of such devices highly complex and negatively
in�uences the rate of randomness generation due to the strict require-
ments placed on the devices [63]. One can see that, although the DI pro-
tocols provide strong security but the complicated experimental setups
and the limited e�ciency is a big downside to these protocols. Addi-
tionally, as the requirement of pre-established true random numbers is
necessary to select the measurement bases, the protocols are commonly
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termed as randomness-expansion protocols [31].
To improve the rates at which random numbers are generated and

making the experimental setups easier to implement, a compromise was
proposed in the form of semi-device independent (SDI) protocols. In
the SDI protocols, the devices remain untrusted as no assumptions are
made about their internal working but an upper bound on the capacity of
quantum channel is however assumed. This was �rst demonstrated in the
context of one way QKD [35]. The preparation and measurement devices
are kept in a safe area, have no access to side channels or shared quantum
entanglement although they may share correlated classical variables but
not correlated inputs.

3.1.2 SDI random number generation protocols

SDI protocols employing n 7→ 1 QRACs for the generation and certi�-
cation of truely random numbers have been shown in [24; 31]. Typical
SDI RNG protocols require two black boxes and can be implemented
in a simple prepare-and-measure scenario. Such a scenario maintains
two devices (black boxes) where one device lets the user to prepare the
physical system in di�erent ways and the measurement device is then
used to perform a measurement on the prepared physical system. So,
the inputs in a SDI protocol correspond to the choice of preparation and
measurement for the sender and receiver device. We will now discuss
the generation of random numbers using high level QRACs of the form
n(d) 7→ 1. Here d is the assumed upper bound on the underlying Hilbert
space. The general description of the SDI protocols is as follows.

Similar to the DI protocol, in a SDI random number generation proto-
col, a given experiment is divided into numerous rounds. These rounds
are then categorized into di�erent groups of random sizes. In each of
these groups, all the rounds are used for generation of random numbers
albeit one particular round. This speci�c round, the �rst round in ev-
ery group, is always used for the calculation of the security parameter
T , which is used to certify true randomness and is strongly correlated
to the average success probability of a QRAC, in our case The security
parameter sets a lower bound on the average amount of randomness of
a measurement result in any given round.

Let us suppose that χ is a set of elements that contains all the possible
inputs for the preparation and measurement devices. For the rounds
used for the security parameter estimation, the inputs are always chosen
randomly from χ. Whereas for the randomness generation rounds, an
input is chosen from χ

′
(a subset of χ) independently of the group.
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Traditionally, as mentioned above, RNG protocols use the same input
for all randomness generation rounds, i.e., only one element in χ

′
. This

is vital as otherwise more randomness is expended as compared to what
the protocol generates.

For implementing the SDI RNG protocol, consider a given input
string a of n bits, a = a1, ..., an, such that the state preparation black
box receives any one of the dn inputs associated with the input string.
For each received input, the preparation box prepares a quantum state
ρa, only the Hilbert space dimension of which is known. ρa is then
communicated to the measurement black box. The measurement black
box is provided with a set of n measurements where any one of these
measurements y ∈ {1, ..., n}, when performed, will return an outcome
b ∈ {0, ..., d− 1}. Again, we have no information regarding the prepared
state ρa or the measurement settings (bases) and the whole preparation
and measurement process results in a conditional probability distribution
P (b|a, y).

3.1.3 Certi�cation and quanti�cation of randomness

As stated before, security parameter T is important as it is a test of
randomness and certi�es its generation by setting a lower bound on the
average amount of randomness of a measurement result. It also in turn is
strongly connected to the average success probability of a QRAC (in our
case the multi-dimensional quantum random access code with d = 4).
The e�ciency of this QRAC serves as the security parameter T and is
mathematically expressed as

T =
1

ndn

∑
a,y

P (b = ay|a, y) (3.1)

It is important to mention here that the average success probability
of a QRAC is a vital parameter in the pretext of randomness generation.
For given input random numbers a, y and the resulting measurement
outcome b, generation of random numbers is directly related to the av-
erage success probability. The success probability parameter guarantees
the randomness of the measurement outcome, provided that the classical
bound is violated, without making any assumptions about the internal
working of the black boxes. This is possible as if a given probability dis-
tribution P (b|a, y) violates the classical bound, randomness is certi�ed
as it is veri�ed that a classical deterministic strategy can not reproduce
this P (b|a, y).
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For generation of random numbers, it is important to not only certify
but also to quantify the amount of randomness of measurement outcome
b. The parameter used commonly for quantifying generated randomness,
for random inputs a and y, is the minimum entropy function H∞ given
as

H∞ (B|X = a, y) = − log2 max
b,a,y

P (B = b|X = a, y) (3.2)

The aim is to �nd a lower bound on H∞ as a function of security param-
eter T . This is achieved by using methods [64] employing semi de�nite
programs (SDP) [9] that give lower bounds over a quantity by perform-
ing optimization over states and measurements from the interior of quan-
tum set of probability distributions [65]. In order to compute a lower
bound on quantity of randomness, all parameters that could reproduce
the observed data must be optimized whereby the least random result is
chosen. In section 3.1.5, it will be shown that the amount of randomness
generated from high level QRACs is more than what is generated by 2
dimensional QRACs.

3.1.4 Certi�cation of more randomness

In the preceding section, it was reported that higher-level QRACs can
generate more randomness when compared with their lower level coun-
terparts. However, there are ways to certify more randomness, even for
higher level QRACs, by utilizing subsets of data alone. One such method
is demonstrated in article II, where its shown that the requirements on
the used experimental setup can be lowered greatly if the computational
capacity available to the user is high. The QRAC used for this purpose is
the 2(4) 7→ 1 and experimental data from this code is used for the calcu-
lation of T . The results presented are both qualitative and quantitative
in nature as it is shown that a user with access to large computational ca-
pacity can certify the existence of randomness in an experimental setup
where another user with lower computational capacity can not. Addi-
tionally, for the same setup, the user with large computational capacity
can certify more randomness. The ability to certify the existence of ran-
domness and to certify more randomness depends upon the number of
settings (elements in χ

′
) used for the randomness generation round.

It was stated before that traditional SDI RNG protocols use the same
input for all randomness generation rounds, i.e., only one element in χ

′
.

However, the number of settings (number of elements in χ
′
, denoted asK

from now on) used for a randomness generation round is a very important
parameter in terms of required computational capacity and the amount
of randomness generated. The idea behind these protocols (for K > 1) is
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that for a large number of rounds used for security parameter estimation,
the average value of T calculated from these rounds will be approximately
similar to the estimated O (

√
N) average value for the rest of the rounds

provided that K is chosen randomly.
The randomness of measurement outcome B is quanti�ed by average

min-entropy function, expressed as

Hav
∞ (B|X) = − 1

K

∑
x∈χ′

log2 (max)b P (B = b|X = a, y) (3.3)

where optimization over all parameters is done using state-of-the-art
SDPs. However, minimization of log max{.} is not possible using SDP as
log max{.} is a decreasing function, where �nding its minimum is equiv-
alent to �nding the maximum of the argument. In this regard, the con-
cavity of the log (.) function can be used such that we get Hav

∞ (B|X) ≥
−log 1

K

∑
x∈χ′ (max)b P (B = b|X = a, y).

For maximizing the argument, a separate maximization should be
executed for all b where a separate value of b is chosen for every round.
This leads to optimization over DK rounds where D is the number of to-
tal values that B could have. This is quite complex as the computational
capacity required for the task increases exponentially with K. Nonethe-
less, by exploiting the properties of min-entropy function (depends only
on the largest value of P (b|a, y)) and RACs (distinguishes between out-
comes B = ay or B 6=ay), one can use a new binary variable B′. B′ can
be obtained from B by classical postprocessing and is 0 when B = ay
and 1 otherwise. As B′ takes only two values, the number of optimiza-
tions required to set a lower bound on min-entropy function are lowered
to 2K . This number remains the same even for scenarios where QRACs
of even higher dimensions are considered. In the next section, it will
be shown how this method can lead to certi�cation of more randomness
along with a lower critical T value.

3.1.5 Randomness generation from 2(4) 7→ 1 QRACs

Here, we will consider the possible generation of random numbers from
our 4-level QRACs in a semi-device independent scenario. Let Alice and
Bob denote the preparation and measurement devices where correspond-
ing to a 2(4) 7→ 1 QRAC, Alice′s input numbers a0 and a1 can attain
values from 0 to d− 1 and she communicates a 4-level quantum system
to Bob who aims to �nd outcome B = ay. The e�ciency (T) of this
4-level QRAC serves as our security parameter, which is the parameter
that certi�es the randomness of Bob's measurement outcomes by setting
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a lower bound on the average amount of randomness in a measurement
outcome. The security parameter is given in eq. 3.1 where ndn = 32.

Generation of random numbers is directly dependent on the success
probability of a QRAC. By using our experimental results of the 2(4) 7→ 1
QRAC, we calculated the value of T where T = 0.7347. Bearing in
mind the fact that the security parameter T clearly violates the classical
bound (0.625), we can certify that the randomness generated is genuine.
Now that the randomness in measurement outcomes is certi�ed we can
calculate the amount of randomness generated by the use of minimum
entropy function as given in eq. 3.2 and is shown below in Fig. 3.1.

Figure 3.1: Semi-device independent expansion of randomness using
2(4) 7→ 1 QRAC. Reproduced from [9].

In quantitative terms, the amount of randomness (0.42) is signi�-
cantly larger as compared to randomness generated (0.23) for known
n = 2 QRACs of dimension two [31; 32] leading one to state that more
randomness can be generated using random access codes of higher dimen-
sions. It is also apparent from Fig. 3.1 that total randomness produced
is very sensitive to the optimal QRAC average success probability of 0.75
as even a very small deviation from the optimal quantum value leads to
an incredible change in the amount of randomness produced and below
a critical value of T no randomness is produced. Therefore, one can
conclude that although more randomness is produced using high-level
QRACs but the amount of randomness produced is strongly dependent
upon the optimal value of a QRAC.

The experimental results and the security parameter obtained were

37



then used by our theoretical collaborators who used it to investigate the
computational requirements of methods (used for optimization over all
involved parameters) on postprocessing of experimental data for ran-
domness certi�cation. It is successfully shown in [66] that for a given
experimental setup, by increasing the value of K (no. of possible set-
tings used in randomness generation round) from 1, a user with more
computational power can certify not only more randomness but also the
existence of randomness where a user with less computational power
cannot. K = 1 is the case, where the same inputs are used in every ran-
domness generation round shown in Fig. 3.1. For our experiment, the
critical value of T is given as TK = 16−K

16
3
4 + K

16
5
8 . Here K is the number

of inputs used for randomness generation rounds, 16 are the number of
states that Alice can communicate, 3/4 and 5/8 are the success proba-
bilities for the optimal and non-optimal states. The advantage of using
K > 1 is clear as critical TK=1 ≈ 0.742 and TK=2 ≈ 0.734 [66].

The method was presented in section 3.1.4 where it was shown that
the number of optimizations required to set a lower bound on min-
entropy function are lowered to 2K . In Fig. 3.2 these optimizations
are plotted for various values of K as a function of T . It is clearly seen
that not only more randomness is certi�ed for increasing values of K but
also, at the same time, the critical value of parameter T is lowered.

Figure 3.2: A lower bound on min-entropy shown for di�erent values of
K as a function of security parameter T . Certi�cation of more randomness
is apparent for larger values of K. Reproduced from [66].

Now to compare it with the experimental results, the amount of
randomness generated for di�erent K from the experimentally obtained
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value of the security parameter is shown below in table 3.1. One look at
the table one can see that the amount of randomness increases quickly
with K. However, for K = 1 no randomness is generated despite the
high �delity of the experiment because only rounds with a speci�c in-
put setting is used for randomness generation. Hence, no randomness is
generated as the measurement outcome can be predicted with certainty.
The last column in the table 3.1 shows the time taken for computa-
tion, which clearly re�ects the increased complexity of larger K. It is
estimated that to certify the randomness when all the settings are used
for its generation, i.e., X = X′ it would take 400.000 years on the used
machine.

Table 3.1: Randomness generated for di�erentK from the experimentally
obtained value of T . Reproduced from [66].

K Pav(B
′ = 0) Hav

∞ time taken
1 1 0 c.a. 10 min.
2 1 0 c.a. 20 min.
3 0.99512 0.007058 c.a. 40 min.
4 0.98180 0.026499 c.a. 1.5h.
5 0.96882 0.045699 c.a. 2.5h.
6 0.95565 0.065446 c.a. 5h.
7 0.94628 0.079661 c.a. 11h.

To conclude this section, the 4-level QRAC was used for the esti-
mation of the security parameter that certi�ed the genuineness of ran-
domness by violating the classical bound. Moreover, by increasing the
number of possible settings for a randomness generation round, a gener-
alization of SDI random number generation protocols is presented. The
advantage is the certi�cation of more randomness for a given experi-
mental setup but on the other hand greater demands are placed on the
required computational complexity of the certi�cation.

3.2 Test of non-classicality

In section 3.1 we looked at increased certi�cation of genuine randomness
using QRACs. In addition, QRACs can also be useful in testing the non-
classicality and measuring the dimensions of a physical system (classical
or quantum). Both of these applications play a vital role in communi-
cation tasks in QIP as certifying the dimension and non-classicality of
a system implies that a classical description of the experiment is indeed
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not possible [67]. Here it will be introduced how QRACs can be used as
a potent resource for certifying the quantumness or non-classicality of a
given physical system.

The potential use of classical communication to simulate quantum
communication [68; 69] is an important problem in foundations of quan-
tum theory and communication complexity [65]. Therefore, testing the
non-classicality of any given system becomes important as it can help to
quantify how much of classical communication is needed for the purpose.
We will investigate the problem in a prepare-and-measure implementa-
tion based on a SDI scheme where only the observable data is relied upon
and an upper bound on the dimension of the system is assumed. The
observable data represents the probabilities of obtaining certain measure-
ment outcomes for the chosen preparation and measurement settings. In
a simple prepare-and-measure scenario, it has been shown that the use
of quantum communication can be guaranteed provided an upper bound
on the dimension of system exists [70]. This upper bound on the dimen-
sions of the communication is vital as if the system is not dimensionally
bounded then the measurement device will, in principal, can have access
to all information about preparation and measurement settings and this
information can then be used to reproduce any set of data.

Several tests of non-classicality have been reported already and these
include violations of a Bell inequality [71], use of dimension witnesses
[70] or success probability in a communication complexity task [72]. Ad-
ditionally, in [67], optimal quantum dimensional witnesses of dimension
d (in a SDI scheme) based on linear inequalities are used for testing
the non-classicality of a communication system and several case stud-
ies, for deriving dimensional witnesses for simple examples of networks,
are discussed. As the quantum dimensional witness violates classical di-
mensional witnesses of dimension d, the use of a quantum dimensional
witness for tests of non-classicality of physical systems of dimension d
makes sense. For a given set of data, the violation of a classical dimen-
sional witness establishes the use of quantum systems to reproduce the
same data set and this comes essentially from the ability of quantum
resources to outperform classical resources of same dimensions.

3.2.1 QRACs for test of non-classicality

Now, we will explore the role of d-dimensional 2 7→ 1 QRACs as a can-
didate for testing the non-classicality of a communication without any
constraints from limited detection e�ciency of detectors used and other
conditions as the absence of shared randomness. This arises from the
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requirement that the parties involved in test must lead to a conclusive
result in the absence of the above constraints. Experimentally, this is
not so straightforward to achieve as the DI non-classical tests are only
conclusive if the detection e�ciency used is above a critical value. These
minimum values of detection e�ciency are known for various tests but
are di�cult to achieve in practise due to technological limitations. Con-
sequently, it is no coincidence that up until now only a few DI tests have
been demonstrated [45�47; 63; 73]. Such a situation can however be
avoided by adding additional constraints such as the absence of shared
randomness between the preparation and measurement devices, which
allows the experimentalist to use any arbitrary detectors of non-zero
detection e�ciency for DI tests of non-classicality [74]. This certainly
makes implementing such DI tests of non-classicality easier and has been
recently shown in [75; 76].

A quantum random access codes, employing qubits as the physical
quantum system, can also be used as a quantum resource for testing the
non-classicality. As established before, for a given input string a of two
bits, (a1, a2), an information capacity of 1 bit (Alice can only send one
bit (qubit) at a time) and measurement settings y of the receiver, the
success probability of a QRAC is given as P (b = ay | a, y). QRACs are
a good candidate for SDI tests of non-classicality as the optimal average
success probability for a QRAC, when only one qubit of information is
communicated, is 0.85 which is signi�cantly larger than the classical case
when the avg. success probability for one bit of information capacity is
0.75. This capability of the QRAC to outperform the classical code
renders it valuable for such tests of non-classicality.

The aim is to demonstrate the use of QRACs as a resource for a
SDI test of non-classicality without the detection loophole or absence
of shared randomness conditions. This however does not imply that
QRACs are una�ected by the detection e�ciency loophole [77] and sim-
ilar to other similar tests, they are also rendered inconclusive due to low
detection e�ciencies when the detectors fail to detect in an experimental
round. This can be bypassed by using the most generic of approaches
where the devices return a random number in all such rounds. The ob-
vious advantage of this approach is that the e�ective detection e�ciency
arti�cially becomes 100% although this comes at a cost of the maximum
quantum success probability. The quantum probability that can then be
achieved from detectors recording photons in the fraction of rounds η is
thus given as

Qη = ηQ+ (1− η)
1

2
(3.4)

41



One can see from the above equation that this quantum probability
goes to 1 for η → 1 and to 1

2 for η → 0. The motivation is to construct
a test that is independent of a strict required detection e�ciency value,
i.e., η is as close to zero as required. This could be achieved if the optimal
classical probability is limited to 1

2 .

3.2.2 Probability polytopes

In [78], it was suggested that a Bell inequality de�ned for a speci�c ex-
periment can always be extended to situations involving more observers,
measurement settings and outcomes. In this way, it was shown that if
the original inequality de�nes a facet of the polytope of the joint outcome
probabilities then the lifted ones also de�ne the facet of a more complex
polytope. Here, the mentioned polytope can be de�ned as a geometrical
object with �at sides that can exist in n-dimensions. Using this frame-
work of probability polytopes, we can extend our above re�ections for
QRAC to other tests of non-classicality as well. Now this concept of
probability polytopes will be used to demonstrate how it can be used in
a QRAC scheme for a non-classical test.

Let p(~x, ~y) be a set of conditional probability distributions obtained
in an experiment. Here, ~x and ~y respectively, in an experimental run,
represent the total set of outcomes and the inputs for all the devices.
Now through the vector ~p, consisting of the complete set of p(~x, ~y), one
can describe the behavior of any device that makes use of any strategy.
Here, the linear combinations of all the conditional probabilities p(~x, ~y)
is important as its this parameter that reveals if the device violate Bell
inequalities or not. Similarly, one can also describe another vector ~t, it
exists in the same space as ~p, to represent these tests such that the scalar
product of ~t and ~p gives the test's result.

One example for such a test is the given by the average success proba-
bility of the RAC, which in the case of 2-dimensions is S = 1

8

∑
a,y P (b =

ay|a, y). For such a RAC, the vector ~t would consist of 16 elements that
correspond to the number of possible combinations of all the parame-
ters, i.e., inputs to the preparation and measurement devices (a, y) and
the outcomes b. For the successful cases when b = ay, each of these
elements correspond to 1

8 and 0 otherwise. For classical RACs commu-
nicating single bits of information, it has already been established that
regardless of the strategy used, the success probability corresponds to
Sav = ~tRAC · ~pcl ≤ 0.75. Moreover, for classical devices, ~pcl is a poly-
tope where all its vertices conform to strictly deterministic strategies and
other strategies are simply their convex combinations thatare represented
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by points inside the polytope. For the quantum distributions, this set
~pqm is not as simple to characterize and is usually larger than the classical
counterpart albeit with equal dimensions. It has however been reported
that there are situations when this is not the case [79] and such a situ-
ation points to the presence of a vector ~t0 such that (∀~pcl ~t0 · ~pcl = 0).
It is straight forward to imagine that the the subspace spanned by this
vector must be normal to that of ~pcl.

Whereas, on the other hand, the quantum distribution ~pqm must
be such that ~t0 · ~pqm = Q 6= 0. Now to obtain an expression for the
probability distribution as a function of detection e�ciency, lets revisit
the scenario where an experiment while employing detectors with perfect
detection e�ciency leads us to the probability distribution ~pqm. Again,
for all the events when no particle is registered by the detectors, they
return a random outcome. The probability distribution observed in the
experiment then corresponds to the vector ~pη = η~pqm+(1−η)~pcl and the
test's outcome will be ηQ 6= 0 (for η > 0). Hence, the aim here is twofold:
to construct a game that limits the classical success probability to 1

2 and
to realize experimental setups that allow for di�erent dimensions for the
classical and quantum distribution sets.

3.2.3 Parallel implementation of QRACs

A parallel implementation of RACs consists of two preparation and two
measurement devices that form two random access codes but the prepa-
ration and measurement devices are paired randomly with each other in
every round, i.e., in a given round, preparation device P0 is paired with
either measurement deviceM0 or measurement deviceM1. Similarly, P1

is paired with M1 if P0 is paired with M0 and vice versa. In this way, in
any given experimental round we have two RACs performing in parallel
to each other. This switching in pairing of preparation and measurement
devices is implemented by parameter x where x = 0 corresponds to a
pairing of P0 with M0 and P1 with M1 and vice versa for x = 1. The
terminology for input settings to the devices follows the previously es-
tablished terminology such that a0 and a1 represent the input settings to
P0 and P1 while y0 and y1 denote the input settings to devices M0 and
M1. Every possible input i is thus represented as i =

(
a0, a1, y0, y1, x

)
and a receiver n is considered successful if the outcome is bn = an⊕xyn .
A graphical illustration of such an implementation of parallel RACs is
demonstrated below in Fig. 3.3.
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Figure 3.3: A graphical representation of a parallel QRAC implementa-
tion. Solid lines represent the coupling of preparation and measurement
devices for x = 0 whereas the dotted lines represent the corresponding
pairing for x = 1.

Now, we will discuss how such a parallel implementation of RACs
can be used for performing a test of non-classicality without any depen-
dence on a strict detector e�ciency or other additional conditions on the
devices used. The reasoning is straight forward as the motivation for the
parallel RAC scheme arises due to the apparent need for the parties to
have coordinated strategies for optimal success in the standard classical
RAC. Due to the random pairing of the devices, the parallel implemen-
tation rules out this possibility hence the parties must be correlated with
each other for their strategies to work every time. Moreover, such corre-
lations must also be visible to the experimentalists. Without using such
correlations, the classical devices cannot establish joint strategies and
the e�ect will not be di�erent from the case when the receivers simply
return completely random outcomes. To show that this implementa-
tion succeeds for our main cause, we make use of the formalism of the
conditional probability space.

For our case corresponding to the 16 combinations of a, b and y, there
are in total 216 di�erent deterministic strategies. Due to the occurring
symmetries between some of them, they correspond to 30496 di�erent
points in the conditional probability space however, there are only 125
linearly independent vectors between these points. We de�ne out vector
~t such that it is parallel to the line that connects the point ~pqm and
its projection onto the classical subspace. Here, ~pqm corresponds to the
set of probability distributions that would arise in the perfect quantum
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experiment. We can use the following �gure of merit

T =
∑

a00⊕a10⊕a01⊕a11=1

∑
y0 6=y1

∑
b0,b1,x

s0s1p(b
0, b1|a0, a1, y0, y1, x), (3.5)

here s0 and s1 are success indicators of the two receives where sn = 1
when bn = an⊕xyn and -1 otherwise [80]. Here, based on our test, the
maximum value of T for the classical case is 0 and the corresponding
quantum value is 16. So an experimental TQ 6= 0 value will prove the
non-classical behaviour of the communicated systems.

3.2.4 Experimental realization

Now we will look at a simultaneous experimental application of two
QRACs working in parallel with each other while employing qubits as
their system of communication. In this framework, irrespective of the
coupling between them (M0P 0 andM1P 1 or vice versa), the state prepa-
ration devices look identical to both the measurement devices as single
photons sent to them from the two preparation devices have identical po-
larizations. Hence, the measurement device has no way of telling if they
are coupled to P 0 or P 1. In this section, we will see how such a con�gura-
tion of parallel RACs was implemented experimentally in the laboratory.
Probability distributions for all states are measured to demonstrate a test
of non-classicality without any requirements for a critical detector e�-
ciency or strong assumptions as the absence of shared randomness. The
method for which has already been presented in detail in section 3.2 and
[80]. Continuing on the pattern followed in the section 3.2.4, we will
begin by considering the state preparation for the experiment, followed
by a detailed analysis of the experimental setup and then moving onto
experimental results and conclusions.

3.2.4.1 State preparation

The QRACs implmented in the parallel scheme make use of qubit states
for information encoding and as a result any quantum system of di-
mension two will su�ce. We have used the two path state preparation
method discussed in section 1.2.4 where information is encoded into two
di�erent and distinguishable spatial photonic modes |1〉 and |2〉. Using
the two path encoding, any qubit state can be written as

|ψ〉 = α|1〉+ β|2〉 (3.6)
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This is identical to the qubit state shown in eq. 1.3. The source
of single photons here is a heralded single photon source as presented in
section 1.2.2. Bearing in mind that we are implementing two RACs here,
two di�erent heralded single photon sources are used as input to each
preparation device. For input to each preparation device, the heralded
single photons are passed through a 3 nm interference �lter followed by
the coupling of the photon state to a SMF �ber. This is done exactly the
same way as it was for the previous experiment. The SMF has a passive
polarization controller attached to it such that the photon source can be
made to produce horizontally polarized single photons in a single spatial
mode of the �ber. Now by making use of a suitably oriented HWP and
a PBS, we can expand the state to two spatial modes, whereby the state
after the PBS is given as

|ψ0〉 = cos(2θ0)|1〉 + sin(2θ0)|2〉
|ψ1〉 = cos(2θ1)|1〉 + sin(2θ1)|2〉

(3.7)

Here |ψ0〉 and |ψ1〉 represent the qubit states for preparation device
M0 andM1 respectively. It should be noted that the photon polarization
in mode |1〉 is horizontal whereas in mode |2〉 it is vertical. Rightful
orientation of the HWPs (HWP (θ0) and HWP (θ1)) allow us to prepare
any qubit state of the above form. The four qubit states used in this
experiment are given below

|ψ1〉 = |2〉
|ψ2〉 = |1〉

|ψ3〉 =
1√
2

(|1〉+ |2〉)

|ψ4〉 =
1√
2

(|1〉 − |2〉)

(3.8)

Looking at these qubit states, we can see that they can be pre-
pared from eq. 3.7 by orienting the HWPs(θ0 and θ1) at 0◦, 45◦, 22.5◦

and −22.5◦ respectively. This preparation is �guratively represented by
state preparation box in the experimental setup described in the next
section. The idea behind using two uncorrelated photons, one prepared
in P 0 and the other in P 1, passing through the setup at the same time
where one will be measured in M0 and the other in M1 is to show that
the two measurement devices are independent of each other and the
preparation devices.
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3.2.4.2 Experimental setup

The experimental setup used in the experiment is shown above in Fig.
3.4, whereas Fig. 3.5 shows the setup implemented in the laboratory.
The functionality of the state preparation devices and the details about
the heralded single photon sources has been presented already. In both
the state preparation boxes, one can see an additional HWP in the spatial
mode |2〉. The use of this HWP guarantees that the same polarization
can be sent through |1〉 and |2〉.

Figure 3.4: Experimental setup for implementation of two parallel RACs.
P 0 and P 1 are the two preparation devices, M0 and M1 are the measure-
ment devices. Choice of pairing between the preparation and measurement
devices is controlled by box R.

The setup consists of three parts: the preparation boxes that encode
information into the qubit and send it to the measurement devices. They
are followed by a part R that allows the switching and pairing between
the preparation and measurement devices followed by M0 and M1.

The part of the setup R contains two PBSs surrounded by three
HWPs each where two con�gurations of one PBS surrounded by three
HWPs enable pairing of a given preparation device with any measure-
ment device. Suitable orientations of the HWPs allow the PBSs to direct
incoming photons to the desired measurement device. In the scope of
this experiment, the area R is not considered a device for the purpose
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of analysis. The part R could simply be replaced by optical �bers to
randomly connect senders and receivers in each round. This would leave
R empty but greatly increase the duration of the experiment.

Figure 3.5: Experimental Setup built in the laboratory for implementing
the parallel QRAC scheme.

Each measurement device receives incoming photons in two paths
from R where they are made to interfere in an interferometric setup.
The interferometric setup consists of one HWP and one PS each in both
arms. The use of HWPs allow us to control photon polarizations such
that incoming photons will leave through the same output port of the BS.
The PSs in the two arms make sure that the right phase exists so that
a high visibility of interference can be achieved. Upon leaving the inter-
ferometer, the photons pass through a HWP(φi), where i = 0, 1, and the
adjustment of angle φi allows us to select the appropriate measurement
settings. For the qubit states, the two measurement settings correspond
to setting the HWP to an angle φ = 11.25◦ and φ = 78.75◦ respectively
[72]. A PBS placed directly after the HWP splits the polarization modes
of the two spatial modes which are then coupled to two multimode �bers
(MMF), with a coupling e�ciency of ≥ 85%, at the two output ports of
the PBS. The MMFs in turn are connected to two single photon APDs to
register the single photons arriving at both output ports of the PBS. For
every setting of the HWP(φi), the success probability distributions can
then be obtained through the photons registered at both the detectors
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in each device. The single photon APDs used in this experiment have a
detection e�ciency of ≈ 65% for 780 nm and are connected to an FPGA
based multichannel coincidence unit with a coincidence window of 1.7
ns.

3.2.4.3 Measurements and results

Considering the four states given in eq. 3.8 and the two measurement
settings of the HWP in each measurement device, for each pairing of
the devices (P 0M0 and P 1M1 or vice versa) a total of 64 measure-
ments were performed and the probability distributions were calculated
for these measurements. This resulted in a total of 128 measurements
for the two pairing rounds of these devices. Tables given in appendix 7.3
show in great detail the measurement order, settings and the registered
photon counts for each measurement choice. The �rst table corresponds
to the following pairings P 0 with M0 and P 1 with M1. This pairing
scheme is viable when x = 0. On the other hand, the lower table cor-
responds to the following pairings P 0 with M1 and P 1 with M0. This
pairing scheme is viable when x = 1. Before proceeding to the experi-
mental data presented in the two tables, it is paramount that the reader
understand the following as then the understanding of the tables and the
data presented would not be complicated.

For the two preparation (P 0, P 1) and measurement devices (M0,
M1), if Alice and Alice′ are the ones with access to the preparation
devices, whereas Bob and Bob′ have access to one measurement device
each then in the experimental data tables, a0 is the input available to
Alice such that a0

0 = 0, 1 and a0
1 = 0, 1, i.e., there are four possible

encoding states available to Alice.
Similarly, a1 is the input available to Alice′ such that a1

0 = 0, 1 and
a1

1 = 0, 1, i.e., there are four possible encoding states available to Alice.
y0 is the input available to Bob (0,1), i.e., there are two possible

inputs and two possible measurements.
Similarly, y1 is the input available to Bob (0,1), i.e., there are two

possible inputs and two possible measurements.
The two measurement settings correspond to setting the half-wave

plate to φ = 11.25◦ and φ = 78.75◦ respectively.
The X and Y used in the tables has the following interpretation:

• X = 0, Y = 0 corresponds to no detection at either Bob or Bob'.

• X = 1, Y = 0 corresponds to a detection Bob but no detection at
Bob'.

49



• X = 0, Y = 1 corresponds to no detection at Bob but a detection
at Bob'.

• X = 1, Y = 1 implies detections at both Bob and Bob'.

All the counts given in the two tables are registered in 30 seconds
and were registered when the trigger detectors at both Alice and Alice′

also registered a count. For each choice of setting i = (a0, a1, y0, y1, x), a
total of ≈ 180.000 counts were registered by the coincidence unit for the
two triggers. Out of these total registered counts, ≈ 15% of photons were
detected for each pairing, which corresponds to ≈ 2% of simultaneous
detection in both measurement devices.

For a test of non-classicality, it is important to make sure that the
experimental results are inconsistent with a classical model and can not
be reproduced using classical strategies. Whenever, in a given round,
no particle was detected by a receiver, a random value was assigned to
the outcome. This enabled us to estimate the conditional probability
distribution p(b0, b1|a0, a1, y0, y1, x) and, in turn, the value of T . The
estimated value of T from our experimental data is 0.172 ± 0.013. The
probability that this (or more extreme) value is observed in an exper-
iment in which classical bits are communicated is extremely low. The
corresponding p-value is 1.2× 10−38 leading one to claim that the non-
classicality of the communicated physical system is established conclu-
sively.
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4. Distributed Tasks with Single
Quantum Systems

In this chapter, we will consider two communication tasks that require
the distribution of a quantum system between a given number of partic-
ipants. The �rst deals with the distributed QRAC, which is an adapta-
tion of a standard 3 7→ 1 QRAC and is based on the work done in article
IV. Whereas the 2nd involves the problem of dining cryptographers and
anonymous voting where a single quantum system is distributed between
a number of participants. This is based on the work in article V.

4.1 Distributed QRACs

In the previous two chapters, we established the classical and quantum
RACs before demonstrating an experimental realization of a high-level
QRAC that was followed by a demonstration of two QRAC applications.
For one of these applications, randomness certi�cation, the results from
the experimentally implemented high-level QRAC were used whereas the
other, for the test of non-classicality, employed the use of 2-dimensional
QRACs. However, both the implemented QRACs were of the 2 7→ 1
type. Here, we will study the 3 7→ 1 QRAC that is implemented in a
distributed scheme. In the standard description of the 3 7→ 1 RAC, the
implementation is done in a prepare and measure scenario where the
preparation device receives an input string x = (x0, x1, x2) and com-
municates a single physical system to the measurement device. The
measurement device, in addition, receives inputs y ∈ {0, 1, 2} and yields
an output b = xy. Such a description for this RAC is provided in section
2.1.2 where the success probabilities for retrieving the correct bit (qubit)
are also presented.

4.1.1 Distributed QRACs in a one-path communication network

Here, the adaptation of a standard 3 7→ 1 QRAC in a general commu-
nication network scenario of [67] will be addressed. The communication
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network scheme consists of preparation, transformation and measure-
ment devices where the preparation device prepares quantum systems
that are communicated to the transformation devices. Following the
processing of these systems in the transformation devices, they are for-
warded to the measurement devices where subsequent measurements are
performed to retrieve the encoded information. For our purpose, we con-
sider a one-path alternative of such a general communication network,
which consists of a single preparation device followed by a transforma-
tion and a measurement device. In line with the above description, x0, x1

now denote the inputs to the preparation device, x2 is the input to the
transformation device and y is the ternary input to the measurement
device.

In the distributed 3 7→ 1 RAC, the preparation device can be divided
into two devices that are succeeded by a measurement device. In ad-
dition, the communication between the devices is bounded such that it
is of unit capacity, i.e., each communication is one bit (qubit). Such a
schematic representation for the distributed 3 7→ 1 RAC is provided in
Fig. [4.1] and is the simplest non-trivial adaptation of the random access
code to the general communication network containing all of the three
devices.

Figure 4.1: A graphical representation of the 3 7→ 1 distributed QRAC.
Reproduced from [81].

Like most communication tasks, the average success probability of
the RAC de�nes the e�ciency of the task and is given as

P =
1

24

∑
x,y

P (b = f(x, y)|x, y) (4.1)

where the output b is a function of the inputs x, y. For the distributed
classical RAC, the maximal average success probability that can be
achieved is PC = 2

3 . This happens when f(x, 0), f(x, 1) and f(x, 2)
have no information about each other and is obtained by using the fol-
lowing strategy. The preparation device always communicates x0 to the
transformation device that in turn performs an identity transformation
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for any of its inputs (0,1) and communicates the same system x0 to the
measurement device. The measurement device in turn outputs b = x0

such that the outcome is b = xy every time when y = 0. Although,
for the other two possible inputs of y, the success probability is only
1
2 . This leads to an overall success probability of 2

3 for the distributed
classical RAC, which is lower than the optimal scenario (3

4 , eq. 2.13)
for the standard 3 7→ 1 classical RAC. The optimal classical strategy
for the standard case employs the majority encoding scheme where the
preparation device uses a majority function to communicate the most
frequently occurring bit. This however demands that the preparation
device has access to all the input bits in the string x, which however is
not the case for any of the involved devices in the distributed scenario.

On the other hand, for the distributed QRAC, there exist tasks where
the success probability is maximal (PQ ≈ 0.79, eq.2.11). One such ex-
ample is provided in [67] and will be brie�y described here. Consider
a QRAC protocol where the output b of the measurement device cor-
responds to the following three outcomes f(x, 0) = x0 ⊕ x2, f(x, 1) =
x1, f(x, 2) = x2. The optimal qubit strategy that leads to the maximal
success probability involves the encoding states |ψx0x1〉 = cos(θ)|0〉 +
eiφ sin(θ)|1〉 that correspond to the di�erent inputs given below:

x0x1 00 01 11 10
θ α+ α+ α+ α+

φ π/4 3π/4 5π/4 7π/4

here α± = cos−1
(√√

3+(−1)x2

2
√
3

)
, φ = π

4 (1 + 4(x0 ⊕ x2) + 2(x0 ⊕ x2 ⊕ x1))

and α± correspond to x2 = {0, 1}. Similar to this task, three additional
tasks are also constructed and experimentally realized where the result-
ing (θ,φ) settings, for the optimal states in these tasks, can be straightfor-
wardly calculated by replacing x0, x1, x2 with the corresponding f(x, y)
using eq. (2) in [81].

The preparation device receives inputs x0, x1, assumes that x2 = 0,
and prepares one of the corresponding four input states (ψ00, ψ01, ψ10, ψ11).
The two inputs x2 ∈ {0, 1} of the transformation device are such that,
on the incoming state, it performs a π rotation about the x-axis on the
Bloch sphere for x2 = 1 or identity transformation for x2 = 0. The qubit
state is then communicated to the measurement device. The decoding
strategy for the measurement device involves measurements in the three
MUBs σy, σx and σz. The basis selection for the measurement device de-
pends on the ternary input y, where σy, σx and σz conform to the inputs
y = 0, 1, 2 respectively. This described protocol leads to the maximum
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success probability for the distributed QRAC and owes its optimality to
the fact that the qubit strategies for the distributed and the standard
QRAC are essentially the same [38]. Hence, for inputs x0, x1, x2, the
qubit states received by the measurement device are the same in both
cases and are not disturbed by the distribution between the preparation
and transformation devices [67]. Moreover, this leads to a larger quan-
tum over classical advantage ≈ 1.183 for the distributed 3 7→ 1 RAC as
compared to the ≈ 1.052 for the standard 3 7→ 1 case.

It is pertinent to stress here that the most important requirement
for the above QRAC strategy is that, for x2 = 1, the transforma-
tion device applies a unitary rotation in the Bloch sphere such that
the four initial states and the four transformed states together form
the eight vertices of a cube in the Bloch sphere. This demands that
we have the knowledge of all the possible rotations that transform the
four vertices of a cube to the other four vertices. From the symmet-
ric rotation group of the cube, the corresponding 15 rotations suit-
able for the purpose are Ri(π/2), Ri(π), Ri(3π/2) for i ∈ {x, y, z} and
Rx±y(π), Ry±z(π), Rz±x(π). Depending upon the initial four vertices,
there do exist certain tasks where unitary corresponds to these 15 ro-
tations. This in turn leads to the optimal success probability for the
QRAC.
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4.1.2 Experimental demonstration of the 3 7→ 1 distributed QRAC

Previously, it was suggested that there exist certain QRAC tasks, based
on the above described strategy, where the distributed QRAC gives the
maximal success probability. Four such tasks were experimentally real-
ized and their respective success probabilities were estimated from the
experimental data. For the sake of clarity, the preparation, transforma-
tion and measurement devices from now on will be labelled as Alice,
Bob and Charlie. As mentioned previously, the quantum state for the
optimal qubit strategy corresponds to the following encoding states of
Alice, cos(θ)|0〉 + eiφ sin(θ)|1〉 with θ, φ chosen according to Table 4.1,
that lie at the vertices of a cube inside the Bloch sphere (Fig. 2.1).

Table 4.1: All parameters for Alice's state preparation corresponding to
the four QRAC tasks. Bob's unitary rotations corresponding to his input
values for each task are also presented.

Di�erent Tasks Alice's encoding state Unitary by Bob
f(x, 0), f(x, 1), f(x, 2) x0x1 (φ) (θ) x2 = 0 x2 = 1

00 π/4 α+

x0 ⊕ x2, x1, x2 01 3π/4 α+ 1l Rx(π)
11 5π/4 α+

10 7π/4 α+

00 π/4 α+

x0, x1, x2 ⊕ x0 01 3π/4 α+ 1l Rx(3π
2 )

11 5π/4 α−
10 7π/4 α−
00 π/4 α+

x0 ⊕ x2, x1, x0 01 3π/4 α+ 1l Rx(π2 )
11 5π/4 α−
10 7π/4 α−
00 π/4 α+

x0 ⊕ x2, x1 ⊕ x2, x0 01 3π/4 α+ 1l Rz(π)
11 5π/4 α−
10 7π/4 α−

Table 4.1 contains a detailed account of the four tasks along with the
other parameters that de�ne Alice's encoding states depending upon her
inputs x0, x1 and the unitary rotations performed by Bob corresponding
to his input x2.
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4.1.2.1 State preparation by Alice

For the encoding states of Alice, we needed to prepare a quantum system
of two dimensions and similarly to the previous experiments in this thesis,
we used the polarization degree of freedoms of a single photon. The
source of single photons is the heralded single photon source, described in
section 1.2.2. The horizontal (|H〉) and vertical (|V 〉) polarization states
of the single photon allowed us to realize a two level physical system and
this polarization encoding preparation was described in section 1.2.4.
Using this scheme, a qubit state can then be represented as a|0〉+ b|1〉.
In order for Alice to prepare any four of the input states for a given task
(Table 4.1), she was provided with two half and two quarter-wave plates
such that the encoding state is parametrized as

|ψx0x0〉 = cos(2α)|H〉+ eiφ sin(2α)|V 〉 (4.2)

Experimentally, any qubit state can essentially be prepared by using
a sequential combination of a QWP, HWP and QWP as this makes it
possible to perform arbitrary changes of the photon's polarization state
[82]. The reason for providing Alice with four wave plates stemmed from
practical simplicity where the HWP setting (α) allowed Alice to control
the population between the two polarization states (corresponds to θ in
table 4.1) and the QWP(θa), HWP(β), QWP(θb) con�guration enabled
to perform any arbitrary rotation along the z-axis in the Bloch sphere
(corresponds to φ in table 4.1). This 3 WP con�guration implements a
polarization dependent phase shifter and can be realized by the following
wave plate settings: θa = θb = π/4 and β = (−φ/4−π/4) [23]. Depend-
ing on the value of φ in Table 4.1, one can calculate β for all of Alice's
states.

This robust and elegant scheme enabled Alice to manipulate the pho-
ton's polarization making it possible for her to prepare any of the re-
quired states |ψ〉x0x1 through the relevant orientations of HWP(α) and
HWP(β). For each state preparation, this translated to a rotation of two
wave plates instead of rotating three wave plates as is done in the other
scheme. This not only made the process easier but also contributed less
to the systematic errors. The schematic and the experimental setup are
shown in Figs. 4.2 and 4.3 respectively. Table 4.2 lists all the possible
settings of HWP(α) and HWP(β) for preparing Alice's input states in
each QRAC task.
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Figure 4.2: Experimental implementation of 3 → 1 distributed QRAC.
Alice encodes her states in horizontal and vertical single photon polar-
ization states that are prepared by suitable orientation of HWP(α) and
the combination of QWP(θ1),HWP(β),QWP(θ2). Unitary rotations by
Bob along x-axis, z-axis and I are implemented by a combination of
QWP(θ3),HWP(γ) and QWP(θ4) respectively. A combination of HWP,
QWP and PBS followed by two single photon detectors Di (i = 1, 2) allow
Charlie to perform the measurements in σy, σx, σz bases respectively.

Figure 4.3: Experimental setup built in the lab for the distributed
QRAC.
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Table 4.2: The complete settings for preparing all the states correspond-
ing to the four QRAC tasks.

Di�erent Tasks State Alice's settings
C

f(x, 0), f(x, 1), f(x, 2) x0x1 HWP (α) QWP (θa) HWP (β) QWP (θb)

00 13.6839◦ 45◦ −56.25◦ 45◦

x0 ⊕ x2, x1, x2 01 13.6839◦ 45◦ −78.75◦ 45◦

11 13.6839◦ 45◦ −101.25◦ 45◦

10 13.6839◦ 45◦ −123.75◦ 45◦

00 13.6839◦ 45◦ −56.25◦ 45◦

x0, x1, x2 ⊕ x0 01 13.6839◦ 45◦ −78.75◦ 45◦

11 31.3161◦ 45◦ −101.25◦ 45◦

10 31.3161◦ 45◦ −123.75◦ 45◦

00 13.6839◦ 45◦ −56.25◦ 45◦

x0 ⊕ x2, x1, x0 01 13.6839◦ 45◦ −78.75◦ 45◦

11 31.3161◦ 45◦ −101.25◦ 45◦

10 31.3161◦ 45◦ −123.75◦ 45◦

00 13.6839◦ 45◦ −56.25◦ 45◦

x0 ⊕ x2, x1 ⊕ x2, x0 01 13.6839◦ 45◦ −78.75◦ 45◦

11 31.3161◦ 45◦ −101.25◦ 45◦

10 31.3161◦ 45◦ −123.75◦ 45◦

4.1.2.2 Unitary rotations by Bob

In this general communications network implementation of a QRAC, Bob
would perform a unitary rotation about some Bloch sphere axis if x2 = 1.
From table 4.1, we can see that for the �rst three tasks, Bob would
perform a unitary rotation on the qubit state about the x-axis whereas for
the last task, a π rotation about the z-axis is performed. Experimentally,
one can implement a unitary rotation about any of the Bloch sphere
axes by using a con�guration of one HWP and two QWPs. Although
not necessary, but before presenting the speci�c wave plate con�gurations
and settings for each axial Bloch sphere rotation, it is perhaps worthwhile
to present the generally well known matrix representations of both HWPs
and QWPs [23; 82].

HWP (θ) =

(
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

)
(4.3)

QWP (θ) =
(1 + i)

2

(
1− i cos(2θ) −i sin(2θ)
−i sin(2θ) 1 + i cos(2θ)

)
(4.4)

In [23], some con�gurations of these wave plates are provided that
can implement the rotation of a given input state along the x,y and z-
axis of the Bloch sphere. These con�gurations are presented below and
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provide a practically simpler solution for the task but are not unique in
purpose.

1. Con�guration of wave plates for x-axis rotation:

QWP (
π

2
)HWP (γ)QWP (

π

2
) =

(
cos(2γ) −i sin(2γ)
−i sin(2γ) cos(2γ)

)
(4.5)

2. Con�guration of wave plates for y-axis rotation:

HWP (0)HWP (γ) =

(
cos(2γ) sin(2γ)
− sin(2γ) cos(2γ)

)
(4.6)

3. Con�guration of wave plates for z-axis rotation:

QWP (
π

4
)HWP (γ)QWP (

π

4
) =

(
1 0

0 e−i(4γ+π)

)
(4.7)

For implementing an Rx rotation, the HWP setting γ can be calcu-
lated by simply dividing the given rotation for each task with 4. This
division by factor 4 represents the translation of the Bloch sphere ro-
tation angle to the HWP angle. In addition, it is clear from eq. 4.7
that the same con�guration was also used for introducing φ for a given
state of Alice in the state preparation scheme. To implement the desired
unitary rotations for Rz, γ is calculated in the same manner as β was
calculated in section 4.1.2.1. The complete settings used by Bob in order
to perform unitary rotations about x and z-axis are given below in table
4.3.
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Table 4.3: The complete settings for Bob to perform
Rx(π), Rx( 3π

2 ), Rx(π2 ) and Rz(π) unitary rotations for the four tasks.

Di�erent Tasks State Unitary by Bob
C x2 = 0 x2 = 1

x0x1 QWP HWP (γ) QWP

00 1l 90◦ 45◦ 90◦

x0 ⊕ x2, x1, x2 01 1l 90◦ 45◦ 90◦ Rx(π)
11 1l 90◦ 45◦ 90◦

10 1l 90◦ 45◦ 90◦

00 1l 90◦ 67.5◦ 90◦

x0, x1, x2 ⊕ x0 01 1l 90◦ 67.5◦ 90◦ Rx(3π
2 )

11 1l 90◦ 67.5◦ 90◦

10 1l 90◦ 67.5◦ 90◦

00 1l 90◦ 22.5◦ 90◦

x0 ⊕ x2, x1, x0 01 1l 90◦ 22.5◦ 90◦ Rx(π2 )
11 1l 90◦ 22.5◦ 90◦

10 1l 90◦ 22.5◦ 90◦

00 1l 45◦ −90◦ 45◦

x0 ⊕ x2, x1 ⊕ x2, x0 01 1l 45◦ −90◦ 45◦ Rz(π)
11 1l 45◦ −90◦ 45◦

10 1l 45◦ −90◦ 45◦

For the case when x2 = 0, no unitary rotation is performed by Bob.
Here the orientation of Bob's wave plates is set such that an identity
transformation is performed. This corresponds to the following wave
plate settings QWP (π/4), HWP (−π/4), QWP (π/4) and the incoming
state is communicated to the measurement device as it is.

4.1.2.3 Measurements performed by Charlie

Charlie's task is to perform a measurement in the σy, σx, σz bases de-
pending upon his input y. In the section 2.3.3, it was demonstrated
how measurements in the σz, σx bases can be experimentally applied.
However, as the protocol also demands a measurement choice of σy, a
combination of HWP, QWP and PBS is used to analyze the incoming
qubit state into any of the three measurement bases. This is possible as
HWP and QWP together can rotate the polarization state |H〉 to any
other pure qubit state. The settings of the HWP and QWP in conjunc-
tion with the functionality of the PBS decide the projection of a given
state onto the eigenvectors of the measurement basis. For measurements
in the σy, σx, σz bases, the corresponding HWP and QWP settings are
given in table 4.4.
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Table 4.4: HWP and QWP settings to perform a measurement in the
σy, σx, σz bases.

HWP QWP Measurement Basis
0◦ −45◦ σy

22.5◦ 0◦ σx
0◦ 0◦ σz

4.1.2.4 Experimental results

The experimental results for the four QRAC tasks will now be presented.
The success probabilities for each task were estimated from the detection
events in the two APDs at the two output ports of the PBS in the
measurement device. The APDs and the electronic photon coincidence
counting system used were the same as in the previous experiments.
On average, ≈ 10,000 cps were recorded for each measurement setting
whereas the total measurement time was 10 s. The average experimental
results corresponding to each task are listed in table 4.5 and the detailed
results for each task are provided in appendix 7.4 in tables 7.2, 7.3, 7.4
and 7.5 respectively.

Table 4.5: Experimentally estimated success probabilities for the four
distributed QRAC tasks. PQexp represents the experimental values of P
and the corresponding uncertainties.

QRAC Task Transformation PQexp
x0 ⊕ x2, x1, x2 Rx(π) 0.790 ± 0.018
x0, x1, x2 ⊕ x0 Rx(3π/2) 0.787 ± 0.018
x0 ⊕ x2, x1, x0 Rx(π/2) 0.788 ± 0.018

x0 ⊕ x2, x1 ⊕ x2, x0 Rz(π) 0.788 ± 0.017

The estimated results are observed to be in good agreement with the
optimal success probability (PQ = 0.7887) for the QRAC.
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4.2 Quantum solution to the dining cryptographers prob-
lem

Information exchange between people is an extremely common occur-
rence in our lives and in the context, it is greatly emphasized to es-
tablish secure means of information exchange between communicating
parties such that only the sender and the receiver are familiar with the
contents of the communicated message. In addition, considering another
important aspect, in certain scenarios the identities of communicating
participants can also be highly sensitive information depending on the
of delicacy of the communication. This makes the privacy and protect-
ing the privacy of the communicating participants paramount in such
situations. However, to ensure that the secrecy and con�dentiality of
this information will be upheld upon communication is no easy task.
This is in essence due to the source traceability of any information com-
municated through classical means. The issue becomes highly sensitive
especially in situations where a group of people are tasked to mutually
agree upon a given option, preferably from a number of possibilities. It
should come as no surprise that the topic of anonymous transmission
and secrecy of identity is well researched, and is vital for communication
protocols such as Byzantine agreement [83], key distribution [84] and
digital pseudo signature [85].

One of the most common means for a group of people to collectively
decide something is through the act of voting. Regardless of the demo-
cratic nature of the process, depending upon circumstances and impli-
cations, it is often imperative that the decision of an individual voter is
kept con�dential despite the overall outcome being known to all. This is
almost impossible through classical means of communication. To achieve
the secrecy of a voters identity, a number of secret voting protocols, em-
ploying cryptographic principles, as anonymous broadcast [86] and blind
signatures [87; 88] have been presented.

Anyhow, implementing a trustworthy voting protocol requires that a
number of prerequisites are adhered to. Some of these conditions include
security, veri�ability, and privacy [89]. The security condition establishes
honesty with the guarantee that each legitimate voter casts only a sin-
gle vote with no room for any participant to discover the intermediate
result. The veri�ability condition, as the name suggests, imposes that
the genuineness of the outcome can be veri�ed by any voter without the
need to disclose how (s)he voted. The third condition deals with keep-
ing the anonymity of the voters as under no circumstances should the
individual choices of the voters be revealed. Voting schemes that satisfy
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the �rst two conditions are easier to implement [90] but maintaining the
anonymity of a voter is harder to achieve due to the traceability impli-
cations described previously. In the context, both classical and quantum
solutions to the anonymity problem have been explored. In the coming
sections, a brief introduction to these protocols is provided followed by
our approach for a quantum solution, which we believe is novel, e�cient
and simpler to implement as compared to other classical and quantum
solutions.

4.2.1 The dining cryptographers problem and anonymous veto
voting

In the context of identity protection, the commonly employed classical
means for ensuring anonymity involves the use of trusted third parties
to spread information while keeping the identities of the senders a secret
[91; 92]. The use of multiple servers to randomize the ordering of the
messages is also explored for this purpose [86]. In another approach
for anonymous communication of classical messages, Chaum introduced
the problem of dining cryptographers and presented a classical protocol
that could allow secure transmission of a message while maintaining the
sender's anonymity [93]. Before going into any details, it is important to
brie�y provide an outline to the dining cryptographers problem.

In this problem, three cryptographers that work for the national secu-
rity agency (NSA) go to a fancy restaurant for dinner. After the dinner,
the cryptographers are promptly informed by the waiter that their bill
has been anonymously paid. At this point, although they respect each
others right for secret generosity, they would like to know if the NSA
had anything to do with the payment. Chaum presented the following
protocol to resolve the cryptographers dilemma.

The three cryptographers agree on a strategy where they decide to
�ip an unbiased coin (each of them participates) between them such that
only the one �ipping the coin and the cryptographer to his right would
see the �ipping outcome. Afterwards, each of them declares whether the
two coins (s)he observed had the same or di�erent outcomes. In the case,
where the dinner is paid by one of them, the respective cryptographer
states the opposite of what (s)he actually observed. In this strategy, an
odd number of reported 'di�erences' imply that a cryptographer paid for
the dinner without giving any information about the cryptographer that
actually paid. For even reported 'di�erences', the payment is attributed
to the NSA given that only a single payment for the dinner was made.

At the time, it was claimed that, if all the parties are sincere, then the
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protocol is unconditionally secure [93] and in the case when the payment
is attributed to the NSA, the issue of anonymity becomes irrelevant. For
the sake of understanding, let us consider a scenario where one of the
cryptographers, who did not pay, intends to �nd out which of the other
cryptographers had paid. In the �rst case, let us consider that the two
coins he observed had the same outcomes while the others claimed "dif-
ferent" and "same" respectively. If the unknown outcome is the same as
what the cryptographer had observed then the one who claimed "di�er-
ent" is the one that paid. On the other hand, if the unknown outcome
is di�erent to his outcomes, the one who claimed "same" is the one that
paid. The two possibilities though have equal probabilities to occur. In
the second case, the two coins that the cryptographer observed had dif-
ferent outcomes. If the other two cryptographers, claimed "di�erent"
outcomes then the one who is closest to the coin with the same outcome
as the unknown coin, is the one that paid. However, if the two cryp-
tographers claimed the "same" outcomes then the one who is closest to
the coin with the opposite outcome as the unknown coin, is the one that
paid. But in each of these scenarios, a cryptographer that did not pay
gains no information about the cryptographer that paid.

The implementation of this classical protocol is done as follows: The
three diners, pairwise, establish secret bits, kij = 0, 1. Every one of them
announces the sum (modulo 2) of his/her bits if (s)he did not pay, or the
negation of this sum if (s)he did. Afterwards, each cryptographer sums
up all of the announced bits and calculates the corresponding XOR. If
the result is 1, this implies that the dinner was paid for by one of the
diners whereas a result of 0 indicates that the NSA paid for the dinner.

A number of drawbacks were later observed with the protocol ren-
dering it impractical. Along with the drastically increased complexity of
implementation that arises as the group of participants enlarges, every
time an even number of partners pay this appears as a non-payment
as their subsequent alterations cancel each other out. This problem
is known as the collision problem and as a consequence, the employer
agency is wrongly deduced as the payer. Moreover, the honesty of the in-
volved participants is a signi�cant issue as well as a number of them may
conspire to trace the diner who has paid. This is otherwise known as the
collision loophole. It is pertinent to mention here that if one eliminates
the collision problem, the dining cryptographer question is equivalent
to the anonymous veto problem where a group of people unanimously
decide something, as described previously.

Later on, another classical solution was presented in [94] where the
protocol was shown to overcome all the limitations that are generally as-

64



sociated with the proposed dining cryptographer networks. These weak-
nesses include complex key setup, collisions and sensitivity of disruptions.
The dining cryptographer problem is reconsidered in a di�erent light as
an anonymous veto protocol where the security of this protocol lies in
the computational complexity under the Decision Di�e-Hellman (DDH)
assumption. The mentioned DDH assumption typi�es a computational
complexity assumption in a problem that deals with discrete logarithms
in cyclic groups. The DDH assumption has been shown to be critical for
the strong security of various classical cryptography protocols [95].

The anonymous veto protocol is a consequent variant of the dining
cryptographer protocol, where the problem is re-interpreted such that
the three diners vote against the statement that "no cryptographer has
paid". This is why the term voting is replaced by the term veto. If
somebody vetoes then it is implied that a payment is made and if nobody
vetoes, then this corresponds to a payment by the NSA.

In the proposed anonymous vetoing protocol, the senders use a Schnorr's
signature (zero-knowledge proof) to demonstrate their knowledge of dis-
crete algorithms in each round without disclosing them. The use of
these zero-knowledge proofs is quite common in cryptography where it
has been used to prevent di�erent attacks [96�98]. By employing the
assumption that the broadcast channel available to each voter is reliable
and two broadcast rounds, it preserves the sender's anonymity with ac-
ceptable security unless all the participants are compromised. In another
variant of the protocol, it was also shown that the use of zero-knowledge
proofs can be avoided if the parties disclose their announcements be-
fore each broadcast round. This though comes at the cost of increased
network communication. This simple yet e�cient protocol has its secu-
rity based in the computational hardness that relies on the di�culty in
reversing of some calculations or through restrictions on the number of
dishonest participants [99]. Bearing in mind the ever increasing available
computational power, the former is simply an arbitrary assumption.

In addition to these classical protocols, quantum resources that obey
the quantum mechanical laws have also been explored for practical and
secure solution to the identity anonymity problem. As the use of quan-
tum resources in a number of communication tasks has demonstrated
advantages that extend well beyond the capabilities of the classical sys-
tems, intuition strongly suggests that quantum systems are probably
better suited in achieving the current goal. The �rst attempted quantum
solution made use of the generalized Greenberger-Horne-Zeilinger (GHZ)
states 1 for the traceless communication of bits and qubits [100]. It was

1GHZ state is a multiqubit maximally entangled state such that that it leads
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suggested that entangled states seem to be a very attractive candidate
for traceless unidenti�able transmissions. Since then a number of quan-
tum protocols [101; 102], also employing entangled states for the task,
have been reported. Furthermore, other quantum solutions based on cor-
relations of multipartite GHZ states have also been presented [90; 103]
where the former proposed protocols to guarantee voting anonymity and
the latter proposed secure quantum protocol for both the anonymous
veto and dining cryptographer predicaments.

The quantum protocol presented in [103] exploits the multi-qubit
GHZ correlation and the GHZ paradox 1 for demonstrating a general-
ized secure quantum protocol that promises unconditional security while
simultaneously prohibiting multiple payments. In a three party descrip-
tion of the protocol, the involved parties share genuine GHZ states where
a payment is represented by local unitary operations on the shared states.
Randomly selected copies of the shared states can then be used to distin-
guish the cases of even and odd payments. The �nal step of the protocol
is used to distinguish between zero and double pay scenarios for the
even payment case and the single and triple pay scenarios for the odd
case. The diners perform di�erent unitary operations in the even and
odd cases depending on if they have paid or or not. The product of the
local measurements represents if zero or double payments were made in
the even case or if single/triple payments were made in the odd case. In
the event of double and triple payments, the subsequent payments are
cancelled. The protocol can detect events of multiple payments, which
is yet to be demonstrated for a classical protocol while promising un-
conditional security. The generalized protocol however, is based on the
assumption that no multiple payments occur. The unconditional security
for both the dining cryptographer and the anonymous veto protocols rely
on fundamental features of GHZ correlations that are related to quantum
nonlocality [103].

Regardless of the unconditional security promise of the protocol, the
protocol requires (N + 1)N -dimensional Hilbert space for N voters. This
is no easy task as generating entangled states of many particles is a non-
trivial task and su�ers greatly from low generation rates and low state
�delity along with complicated practical di�culties. However, there is an

to a maximum violation of Bell's inequality for a given set of observables. The
GHZ states are successfully employed in a wide range of problems in quantum
information theory, details of which are beyond the scope of this thesis.

1Greenberger, Horne and Zeilinger (GHZ) demonstrated a direct contra-
diction of quantum mechanics with local realism without using any statistical
inequality [104].
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alternative solution where the essential correlations of the GHZ states
can be e�ectively simulated by phase shifts performed sequentially by
a set of users on a single particle. This is followed by a measurement
that is conducted by a receiver. This approach signi�cantly reduces the
complexity of the experiment as only a single quantum system is used. In
the next section, such a quantum protocol for the dining cryptographer
problem, based on the distribution of a single quantum system between
N parties, is introduced and experimentally demonstrated.

4.2.2 Sequential one-way quantum protocol

Our novel quantum protocol for the dining cryptographer problem is
implemented using a �ying particle scheme in a sequential one-way com-
munication and consists of N + 2 participants. Here N represents the
total number of voters, each provided with sets of phase shifters to per-
form local unitary transformations on the distributed particle, along with
a sender (S) and a receiver (R). S prepares the quantum system that is
distributed among the voters before arriving to receiver (R) that per-
forms a measurement on the received particle. A three-voter scheme is
shown in Fig. 4.4.

Figure 4.4: A schematic representation of the (N + 2)-party protocol
where N = 3. S prepares a random state, which is propagated through
N voters that either perform a unitary transformation (UxlV yl ; xl, yl ∈
{0, 1}) on it or not. Upon arrival of a particle, the receiver performs a
measurement in a randomly chosen basis.

The protocol itself has its foundation in the concept of MUBs. For
a d dimensional system, consider the states {{|j, l〉}j}d−1

l=0 where j rep-
resents the basis and l denotes a corresponding state in the basis. The
computational basis corresponds to the case when j = d and the total
number of bases depends on the dimension d. For powers of primes, sets
of MUBs are informationally complete (j = 0, 1, ..., d) as (d+1) MUBs
are informationally complete for dimension d [105]. For the case, prime
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d ≥ 2 we have

|d, l〉 = |k〉,
∀j<d |j, l〉 = 1√

d

∑d−1
k=0 ω

kl+jk2 |k〉.

ω = e
2πi
d (4.8)

From Eq. (4.8) we can observe that there are two important unitary
transformations.

V = Diag(1, ω, ω2, ω3, ...) (4.9)

permutes the vectors within the basis and corresponds to performing a
veto in the scheme, while

U = Diag(1, ω, ω4, ω9, ...) (4.10)

cyclically changes the bases but neither of these operations a�ects the
computational basis. The operation U transforms the state to an unbi-
ased state and hence is used to safeguard the privacy of a voter in the
protocol.

The generalized and �ner details of the protocol are part of article V ,
included in this thesis. Here, the attention is instead on providing a
three-party description and the corresponding experimental realization
of the protocol. In the case of three voters/diners the protocol can be
implemented by using a quantum system of dimension d = 4.

B1 =
1

2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 ,

B2 =
1

2


1 1 1 −1
1 i −1 i
1 −1 1 1
−1 i 1 i

 . (4.11)

Now, similar to the generalized case of (4.8), there exists a transfor-
mation that permutes between the vectors within the basis. This is
represented by V = Diag(1, i,−1,−i) and will be the veto transforma-
tion in the protocol. In addition, a transformation that changes one
basis into another (non-computational bases) is represented by U =
Diag(1, 1, 1,−1) and will be used for establishing the infrastructure in
the protocol. This transformation is important as it protects the user's
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privacy and ensures that an eavesdropper has no way of knowing which
basis to measure in. Both these transformations are diagonal and as
we have only used two bases (B1 and B2), this implies that the secret
numbers used by the voters in the infrastructure round are simply bits.
Moreover, U and V can also be generalized for squares of primes (d = p2)
and other powers of prime and an example of this is provided in article
V.

4.2.3 The three-party description

To understand how this single photon transmission protocol works, we
start with a simpli�ed description for which we assume that S and R
are two trustable parties. S randomly prepares a single photon in one
of the 8 (4-d) states from (4.11) and we de�ne the computational basis
as: {|0〉, |1〉, |2〉, |3〉}. The photon is then passed on to the voters, one
by one, before reaching R who randomly chooses between basis B1 or
B2 to perform a measurement. The complete protocol is implemented
in two rounds: the infrastructure establishment round and the voting
round. The infrastructure establishment round is important to protect
the voter's privacy and in this round each voter upon receiving the pho-
ton performs a unitary transformation Uxl where xl = {0, 1} and index
l denotes the voter. For

∑N
l=1 xl = 0 mod 2, the overall e�ect of the U's

will be unity. Afterwards, R and S discuss what was prepared and what
was measured and if they �nd a match in their choices, the infrastructure
establishment round is complete and the voters choice of xl is accepted.
In case of a disagreement between S and R, the round has to be repeated
and voters will have to choose again.

In the voting round, there are two runs and S prepares the following
two states 1

2({|0〉+ |1〉+ |2〉± |3〉}) in a random order for these two runs.
In other words, it will be one of the two states in each run where the order
is chosen randomly for each voting round. All the voters would perform
unitary transformation U, if they decided so in the previous round. If
they want to perform a veto (a veto implies an admission of payment
from the participant), they will also apply the V transformation. For
each voting round, R randomly chooses one of the two basis to measure
in such that the chosen basis is used in both runs.

Now, S sends a di�erent state in each run whereas R measures in the
same basis for the two runs. This implies that they will have an agree-
ment in one of the two runs and only this speci�c run will be considered
a valid run. Exactly which run is relevant will be known once they dis-
close their choices for the two runs. For the relevant runs, if the state
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measured by R is the state that was prepared by S, this implies that
no veto was performed by a cryptographer and the diners have come to
a unanimous conclusion that its the NSA that has paid for the dinner.
However, if R measured a di�erent state to what S communicated, this
implies that a veto was performed.

Now that we understand how the dining cryptographer protocol works
for three parties, we will consider this three-party protocol in a broader
sense such that S and R are not trustable and may conspire or plan
individually to produce false results.

The procedure of the infrastructure establishment and voting rounds
is the same as described above where UxlV represents the choice of veto.
Here, a veto cast by a participant implies that (s)he paid for the dinner.

For each run of the experiment, each voter will yield a trit where the
three di�erent values of the trit correspond to three di�erent scenarios.
A value of 0 corresponds to a no action (equivalent to identity transfor-
mation) from the voter. A value of 1 corresponds to the infrastructure
establishment round where the parties decide to apply a U transforma-
tion or not. Lastly, a value of 2 corresponds to the voting round.

In a given run of the protocol, S will randomly prepare any one of the
eight states from (4.11) and R randomly chooses between B1 and B2 for
measurement. Afterwards, they disclose the list of states that were sent
and measured in each run to the three voters. The voters however do
not reveal anything about their actions and their respective trits. The
�rst step by the observers is to discard all those protocol runs where R
chose the wrong measurement basis. Now that only those runs are left
when the basis choice of both S and R matched, the voters disclose their
random trits but not their choice of action (I, U, V, UV). The �rst step
is to discard all the runs when their respective trits had di�erent values.

All the remaining rounds correspond to the three scenarios when all
the parties had same trit values. In the �rst case, 000, all the parties
chose to perform no unitary transformations. These rounds can certify
the honesty/dishonesty of S and R. If R measured the same state that S
had prepared, they are likely honest and dishonest otherwise. The second
case, 111, points to the infrastructure establishment round. Again, If R
measured the same state that S had prepared, the voters choice of U
is correct and incorrect otherwise. For the �nal possibility, 222, The
voters had the opportunity to perform any desired operation as this is
the voting round.

The outcome of the voting round demonstrates the applicability and
the success of the protocol. We shall review the possible outcomes while
keeping in mind that
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1.
∑N

l=1 xl = 0 mod 2 conforms to a unity e�ect of performed U's.

2. Performing a V transformation permutes between the basis vectors.

3. S and R's choices of basis, for state preparation and measurement,
match.

4. The voters are limited to a single veto.

Without knowing the state prepared by S, R cannot identify the
number of vetoes casted by the parties from the state (s)he measured.
Additionally, if S chooses randomly between B1 and B2 for state prepa-
ration, this rules out the possibility of the voters to cheat. In principle,
the intentions of all involved in the protocol can be validated from the
above procedure. Considering that everybody played by the rules and R
measured the same state as prepared by S, this follows that the voters
actions unanimously point to the conclusion that the dinner was paid
by the NSA. However, R's detection of a state that is di�erent to what
S prepared concludes that a veto was indeed performed and the infor-
mation about the number of vetoes can be deduced from the measured
state.

4.2.4 Experimental demonstration of the quantum protocol

Now, we will consider the experimental demonstration of this three-
party (Alice, Bob and Charlie) dining cryptographer and anonymous
veto quantum protocol. A quantum system of four dimensions is re-
quired and for our experiment we choose single photons for this task.
The source of these single photons is a heralded single photon source,
presented in section 1.2.2, where a four level physical system using a sin-
gle photon is prepared by making use of polarization and path degrees
of freedom of the single photon. The four level quantum system is pre-
pared using the 2-path and 2-polarization information encoding scheme,
described previously in section 2.3.1 with the notable di�erence that the
two spatial modes are now represented as |1〉 and |2〉. The complete
experimental setup is shown in Fig. 4.5.

4.2.4.1 State preparation

To prepare a ququart state, we de�ne the following four basis states
|H, 1〉, |V, 1〉, |H, 2〉 and |V, 2〉. Using these basis states, we can write a
given ququart state as a|H, 1〉+ b|V, 1〉+ c|H, 2〉+ d|V, 2〉.

In this N+2 party protocol, S has a choice to randomly prepare any
state from the set 4.11. From now on these states, de�ned by column
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j (where j=1,2,3,4) for a given basis Bi (where i=1,2), will be referred
to as Si,j . The general state preparation setup required to create any of
the eight input states would consist of a 50/50 BS that splits incoming
light into the two spatial paths of the BS with equal intensities. Each
spatial path of the (50/50) BS would also contain a sequence of a HWP
and a QWP to control the population and the respective phase between
di�erent polarization states. The two wave plates are followed by a phase
plate (PP) to introduce a desired phase shift setting (Φ) between the two
paths. In the case of states from set 4.11, this corresponds to a phase
shift of either 0 or π between the two paths. Using this experimental
scheme (Fig. 4.5), one can create any of the eight states from 4.11 and
after the PP in both paths, the state can be written as

|ψgen〉 =
1√
2

(
(cos(2α)|H, 1〉+ eiφ1 sin(2α)|V, 1〉)

+eiΦ(cos(2β)|H, 2〉+ eiφ2 sin(2β)|V, 2〉)
) (4.12)

Figure 4.5: Experimental setup: Sender S prepares states S1,1, S1,3, S2,1

through suitable orientations of α and β stationed in the two output ports
(1), (2) of the BS. The three voters implement their desired transforma-
tions through suitable tilting of HWPs in path (1) and (2) and a phase
shift setting PP in path (2) by mounting them on rotational stages. A
HWP just before the BS in path (2) allows the receiver to choose the
measurement basis. To implement the measurement, stationsM1 andM2.
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Considering that S can prepare eight di�erent input states and the
two unitary transformation choices for each party along with the two
options of basis (B1 and B2) to perform a measurement in, this results
in a total of 256 measurements for the two stages of the protocol. Bear-
ing this in mind, for a proof of principle demonstration, we opted to
prepare the states S1,1 = (1, 1, 1, 1)T and S2,1 = (1, 1, 1,−1)T for the
infrastructure establishment round and the states S1,1 = (1, 1, 1, 1)T ,
S1,3 = (1,−1, 1,−1)T for the voting round. These states were only se-
lected as an example and in principle, any of the eight states from the two
bases could have been chosen for either round. The complete experimen-
tal setup is shown in Fig. 4.5 and now the di�erent experimental parts
will be described one by one. For the above four states, the general state
preparation setup is reduced to only a single HWP (α = β = ±22.5◦) in
each of the two ports of the BS and are parametrized as

|ψ〉 =
1

2

(
(cos(2α)|H, 1〉 ± sin(2α)|V, 1〉)

+eiΦ(cos(2β)|H, 2〉 ± sin(2β)|V, 2〉)
) (4.13)

4.2.4.2 Protocol implementation

The experimental implementation of the protocol requires an interfero-
metric setup. Although, there are a number of choices available for the
task, for the sake of high interference stability, practicality and ease of
implementation, a Sagnac interferometer with shifted paths was chosen.
The advantage is that this scheme allows us to manipulate each path in-
dividually. Such interferometers are renowned for their superior stability
capabilities and the ease to obtain equal path lengths in the two paths
due to the geometrical design.

Each participant, (Alice, Bob and Charlie) can in essence perform
four unitary transformations during the complete protocol. These four
transformations are 1l, U, V and UV respectively. Some of these unitary
transformations require a certain phase between the two orthogonal po-
larization states (|H〉 and |V 〉) in each path. In addition, a relative phase
between the two spatial paths may also be required. There are a number
of ways to experimentally implement this, for our part, we choose to
provide all the three parties with one HWP and a PP in each path (see
Fig. 4.5). The two HWPs in each path were permanently oriented at 0◦

and along with the PP in path (2), were mounted on rotational stages.
The PP in path (1) is only for compensation purposes and as such was
not mounted on a rotational stage.
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Now by appropriately tilting the two HWPs, one can introduce the
desired phase between the |H〉 and |V 〉 polarizations in each path. Let
θ1 denote this phase for path (1) and θ2 for path (2). The relative phase
between the two paths is represented as (φ2) and was implemented by
tilting the PP in path (2). For our transformations, φ2 corresponds to
either 0 or π. The corresponding θ1, θ2 and φ2 values for each transfor-
mation is shown in table 4.6.

Table 4.6: Implementation of U, V and UV transformations. θ1 repre-
sents the phase between the two linear polarizations |H〉 and |V 〉 in path
(1). θ2 represents the same for path (2) and φ2 is the relative phase be-
tween the two paths.

Transformation θ1 θ2 φ2

U 0 π 0
V π/2 π/2 π

UV π/2 −π/2 π

The receiver R can choose between the two basis B1 and B2 for
performing a measurement. To implement the choice of a measurement
basis, a HWP was introduced in the path (2) just before the BS where
the beams in the two paths recombined. The basis selection was made
possible through the appropriate tilting of this HWP (oriented at 0◦) to
set the required phase θBi (i = {1, 2}) between the polarization states in
path (2). This is done in the same manner as the implementation of the
unitary transformations above and for this purpose the HWP was also
mounted on a rotational stage. A HWP was also added in path (1) for
compensation.

Following the output ports of the BS are measurement stations M1

and M2 that were used as polarization analysis stations. M1 consisted
of a HWP (22.5◦) followed by a PBS. The single photons arriving at
the two output ports of the PBS were coupled to multimode �bers that
were connected to single photon APDs (D1 and D2). The APDs used
in this experiment are the same as in every other experiment in this
thesis. M2 is similar to M1 with the only di�erence being the presence
of a QWP (0◦) in the beginning. The two APDs at the output ports of
the PBS were denoted as D3 and D4. The presence of the QWP in M2

is important as the four states, in the two bases, are projected onto the
four di�erent detectors. In this experiment, the detectors D1, D2, D3

and D4 correspond to states S1,1, S1,3, S1,4 and S1,2 when B1 is chosen
and to states S2,1, S2,3 S2,4 and S2,2 for the basis B2.

All the required probabilities for the protocol were estimated from the
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single photon detection counts in each detector. On an average, ≈60,000
cps were detected for each experimental setting with a total measurement
time of 10 s. The experimental results are shown in tables 4.7, 4.8 and
4.9. Table 4.7 represents the infrastructure establishment round where
S randomly prepares one state from each basis (S1,1 and S2,1). Table
4.8 represents the voting round where S randomly decides between S1,1

and S1,3 as the input state. Table 4.9 represents that a wrong measure-
ment basis choice of R leads to inconclusive results as all the detectors
click with almost equal probabilities. Our obtained experimental results,
for each measurement setting in either round, agree with the expected
predictions of quantum mechanics. This validates the successful applica-
tion of our quantum solution for the 3-party dining cryptographers and
anonymous veto problems. In addition, the interferometric visibility of
our setup is above 89% for all measurements. This leads to more than
93% success probability in each run of the protocol (see Table 4.8). The
estimated errors include Poissonian counting statistics and systematic
errors. The innate imperfections of the used optical components as BS,
PBSs and HWPs are the main responsible sources of systematic errors
in this experiment.

Table 4.7: Infrastructure establishment round. The individual states for
each basis correspond to the four detectors as follows: D1 corresponds to
states S1,1 and S2,1, D2 corresponds to S1,3 and S2,3, D3 corresponds to
S1,4 and S2,4 and D4 corresponds to S1,2 and S2,2 respectively. Here, the
�rst index indicates the basis and the second indicates the corresponding
state. S prepares randomly S1,1 between S2,1 while B measures randomly
in B1 or B2. The estimated success probabilities from detection events in
each detector are also shown.

Sender Alice Bob Charlie Receiver D1 D2 D3 D4

S1,1 1l 1l 1l B1 0.934± 0.015 0.006± 0.007 0.034± 0.007 0.026± 0.007
S1,1 1l 1l U B1 0.263± 0.022 0.232± 0.022 0.231± 0.022 0.274± 0.022
S1,1 1l U U B1 0.975± 0.015 0.006± 0.007 0.006± 0.007 0.013± 0.007
S1,1 U U U B1 0.263± 0.022 0.244± 0.022 0.242± 0.022 0.252± 0.022

S1,1 1l 1l 1l B2 0.269± 0.022 0.241± 0.022 0.243± 0.022 0.247± 0.022
S1,1 I U U B2 0.240± 0.022 0.243± 0.022 0.251± 0.022 0.266± 0.022

S2,1 1l 1l 1l B1 0.257± 0.022 0.245± 0.022 0.226± 0.022 0.272± 0.022
S2,1 I U U B1 0.251± 0.022 0.243± 0.022 0.242± 0.022 0.265± 0.022

S2,1 1l 1l 1l B2 0.952± 0.015 0.004± 0.007 0.022± 0.007 0.022± 0.007
S2,1 1l 1l U B2 0.251± 0.022 0.235± 0.022 0.256± 0.022 0.258± 0.022
S2,1 I U U B2 0.983± 0.015 0.004± 0.007 0.002± 0.007 0.011± 0.007
S2,1 U U U B2 0.240± 0.022 0.261± 0.022 0.246± 0.022 0.253± 0.022
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Table 4.8: Voting Round. S prepares states S1,1 or S1,3. The voters
choose to perform a veto if they decided in the last round while R measures
in B1 basis. Measurements with UxlV yl with xl, yl ∈ {0, 1} are shown and
the success probabilities from the detection events in each detector are
estimated for every run.

Sender Alice Bob Charlie D1 D2 D3 D4

S1,1 1l 1l 1l 0.966± 0.015 0.006± 0.007 0.010± 0.007 0.018± 0.007
S1,1 1l 1l V 0.016± 0.007 0.015± 0.007 0.008± 0.007 0.962± 0.015
S1,1 1l V V 0.011± 0.007 0.961± 0.015 0.011± 0.007 0.017± 0.007
S1,1 V V V 0.011± 0.007 0.012± 0.007 0.974± 0.015 0.001± 0.007
S1,1 1l U U 0.975± 0.015 0.006± 0.007 0.006± 0.007 0.013± 0.007
S1,1 V U U 0.023± 0.007 0.028± 0.007 0.006± 0.007 0.943± 0.015
S1,1 1l U UV 0.032± 0.007 0.026± 0.007 0.004± 0.007 0.938± 0.015
S1,1 V U UV 0.014± 0.007 0.94± 0.015 0.023± 0.007 0.024± 0.007
S1,1 1l UV UV 0.004± 0.007 0.961± 0.015 0.015± 0.007 0.020± 0.007
S1,1 V UV UV 0.014± 0.007 0.023± 0.007 0.956± 0.015 0.007± 0.007

Sender Alice Bob Charlie D1 D2 D3 D4

S1,3 1l 1l 1l 0.003± 0.007 0.966± 0.015 0.015± 0.007 0.017± 0.007
S1,3 1l 1l V 0.024± 0.007 0.030± 0.007 0.941± 0.015 0.006± 0.007
S1,3 1l V V 0.955± 0.015 0.004± 0.007 0.022± 0.007 0.019± 0.007
S1,3 V V V 0.020± 0.007 0.019± 0.007 0.015± 0.007 0.960± 0.015
S1,3 1l U U 0.002± 0.007 0.960± 0.015 0.022± 0.007 0.016± 0.007
S1,3 V U U 0.018± 0.007 0.028± 0.007 0.946± 0.015 0.008± 0.007
S1,3 1l U UV 0.018± 0.007 0.024± 0.007 0.953± 0.015 0.006± 0.007
S1,3 V U UV 0.935± 0.015 0.012± 0.007 0.026± 0.007 0.028± 0.007
S1,3 1l UV UV 0.954± 0.015 0.006± 0.007 0.022± 0.007 0.018± 0.007
S1,3 V UV UV 0.015± 0.007 0.018± 0.007 0.004± 0.007 0.963± 0.015

Table 4.9: Voting Round. S prepares states S1,1 or S2,1. The voters
choose to perform a veto if they decided in the last round while R measures
in either of the bases B1 or B2. Every time R chooses the wrong basis, all
detectors click with equal probabilities.

Sender Alice Bob Charlie Receiver D1 D2 D3 D4

S1,1 1l 1l 1l B2 0.257± 0.022 0.255± 0.022 0.247± 0.022 0.241± 0.022

S1,1 1l V V B2 0.249± 0.022 0.249± 0.022 0.249± 0.022 0.253± 0.022

S2,1 1l 1l 1l B1 0.252± 0.022 0.239± 0.022 0.272± 0.022 0.237± 0.022

S2,1 1l 1l V B1 0.258± 0.022 0.256± 0.022 0.254± 0.022 0.232± 0.022

S2,1 1l V V B1 0.256± 0.022 0.262± 0.022 0.241± 0.022 0.242± 0.022

S2,1 V V V B1 0.251± 0.022 0.254± 0.022 0.252± 0.022 0.244± 0.022
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5. Color Centers in Diamond

5.1 Introduction

Defect centers in solid state materials, along with other similar systems,
have shown traits that make them attractive not only from a single pho-
ton emission view point but also from a quantum computation perspec-
tive. In the next two chapters, the aim is to study the scope of a speci�c
defect center, namely the nitrogen-vacancy (NV), as a potential single
photon emitting source. For this purpose, detailed studies of this color
center's properties have been carried out, with a particular emphasis on
the single photon emission characteristics.

It is important to mention here that in addition to the color cen-
ters in solid state materials, there are a number of other alternatives
that have also demonstrated e�cient single photon emission. These in-
clude isolated systems as single atoms, trapped ions, single molecules
and quantum dots, as was introduced in section 1.2.1. For solid state
systems, a major advantage lies in their potential scalability through al-
ready established and developed fabrication techniques that are used in
the semiconductor industry. In diamond, the previously mentioned NV
center has recently appeared as a highly promising candidate for appli-
cations in quantum information processing and technologies [106�108]
and as diamond is host to this and a number of other defect centers, it
makes sense to start by brie�y discussing what makes diamond such a
unique host material.

5.1.1 Diamond

Diamond is a beautiful and exotic structure that has always captured
man's imagination. It is a gemstone that has enjoyed a special societal
position as a mark of beauty, riches and material wealth. The word
diamond comes from the Greek language, meaning unbreakable, and it
is the hardest, most thermally conductive material known to man. Di-
amond, although transparent in its purest form, is found in di�erent
shapes and colors where the color is a measure of its purity and reveals
information about pre-existing impurities (all of which luminesce at dif-
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ferent wavelengths). This strong interest in diamond has lead to a great
desire in understanding its characteristics, resulting in the extensive use
in a wide range of industrial, research and medical applications [109].
So much so that diamond is rigorously studied and investigated in the
�elds of gemology, material sciences, biology and physics among oth-
ers. The composition of diamond is rather extraordinary as it consists
of the lowest mass element that can form, possess and maintain a sym-
metric, tightly bounded (covalent) stable lattice structure. It is almost
entirely made up of carbon atoms (>99%, a carbon allotrope) that are
arranged in a partial variation of a standard face centered cubic structure
(FCC). This cubic structure is also commonly referred to as diamond cu-
bic or diamond lattice. The atypical diamond lattice results in extremely
strong covalent bonding between adjacent carbon atoms leading to ex-
treme hardness of the structure. In the lattice structure, a basis of two
carbon atoms are associated with each lattice point such that the struc-
ture itself resembles two inter-penetrating FCC lattices that o�set from
one another along a body diagonal by one-quarter of its length. The
lattice structure of diamond is shown in Fig. 5.1.

Figure 5.1: (a) Latttice structure of diamond. (b) Di�erent colored
diamonds due to various occurring impurities. Figures are reproduced
from [110] and [111].

Here, the attributes that make diamond a highly attractive element
for several advanced applications are brie�y touched upon. It is dia-
magnetic in nature, has a large band gap of 5.5 eV, corresponding to an
ultraviolet wavelength of 225 nm, is a very good insulator and is optically
transparent with a broad transmission spectrum. The Debye tempera-
ture (Tdebye) of diamond is 2000 K, which implies that there are almost
no optical phonons at room temperature. This leads to the advantage
that the spin-orbital coupling and spin relaxation time due to phonons
is very low as compared to other materials and compounds, i.e., 10 ms in
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diamond at 300 K whereas 10−4 s in GaAs at 2 K. Additionally, it pos-
sesses inherently the highest thermal conductivity of all elements and
provides the maximum resistance to thermal shock. All of the above
characteristics make it viable for a wide range of applications ranging
from medical, industrial, research, telecommunications, data storage to
military applications. Other common applications involve usage in cut-
ting and polishing tools, microwave and infrared applications, high power
optical lasers and x-ray applications.

5.1.2 Classi�cation and fabrication of diamond

In its purest form, diamond is originally transparent and colorless due
to the large band gap that renders it optically transparent to the visible
light. This is not to say that diamond is always colorless and is found
in many di�erent colors where the coloration arises due to di�erent crys-
tallographic defects. These defects refer to irregularities in the lattice
structure along with the existence of various substitutional impurities
(nitrogen, boron, nickel etc.) where a carbon atom is often replaced
by an alien impurity atom. This results in defect centers with di�erent
energy characteristics such that they are able to absorb and emit at dif-
ferent wavelengths. It is due to this wide emission range that diamond
appears in di�erent colors, e.g., yellow (Nitrogen), green (Nickel), blue
(Boron), brown (lattice defects) and many other colors (as shown in Fig.
5.1).

For application purposes, diamond is used in both naturally occur-
ring and synthetic forms. Natural diamonds are formed under extremely
intense pressure and heat conditions at an approximated depth of al-
most 200 kilometers, over a period of billions of years (∼3.3), and are
brought to the surface due to deep volcanic eruptions. However, to meet
the large demand, diamond is also prepared synthetically. Synthetic di-
amond is prepared in the laboratories using a number of techniques with
high-pressure high-temperature synthesis (HPHT) and chemical vapor
deposition (CVD) being two of the commonly used methods. HPHT
synthesis to produce diamond has been used commercially since 1950
where the process to create natural diamonds is emulated in a labora-
tory. These extremely high temperature and pressure conditions are vital
as they render carbon crystals of diamond structure much more stable
compared to other forms of carbon crystals. Diamond produced in this
way can either be single crystal or polycrystalline and is mainly classi-
�ed into type Ib [112]. The HPHT method is the most commonly used
method for diamond fabrication but requires large time, energy, space
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and monetary investments. Setting up a process with such high pressure
and temperature values is no trivial task either.

Another widely used diamond fabrication method is the CVDmethod.
It di�ers entirely from the HPHT process and is not as commonly used
commercially. The growth technique is homoepitaxial and requires a di-
amond surface as a seed layer [113; 114]. The CVD diamond growth
process incorporates a plasma mixture of a hydrocarbon gas (that is rich
in carbon content, commonly methane 0.5-5%), and hydrogen gas at low
pressure conditions (∼30 mbar) inside a vacuum chamber. The process
depends greatly on the role of atomic hydrogen that stops graphite for-
mation and supports diamond growth under these conditions. For this
purpose, molecular hydrogen is converted into atomic hydrogen by gas
activation through the application of microwaves (hundreds of watts at
∼2 GHz), electric discharge or hot �laments. Atomic hydrogen is im-
portant for creating dangling bonds of carbon atoms by breaking the
bonds of the reconstructed surface. Methane in this heated gas mixture
(between 900◦C to 1200◦C) is converted to CH3 where its carbon atom
attaches itself to an available carbon atom on the diamond surface. This
process continues until a diamond �lm is grown in a layer by layer man-
ner [111; 115; 116]. Diamond �lms can be grown with very high purity
depending upon the quality of the gas mixture. However the low growth
rate of diamond �lms and the sample quality has been a concern. Using
deuterium instead of hydrogen has shown a signi�cant increase in the
sample quality [114]. Moreover, the structural defects inside the dia-
mond lattice are shown to be reduced by controlling the growth speed.
These di�erent growth methods make it possible to prepare diamond in
di�erent, shapes, sizes, thicknesses and grades (quality parameter) to ex-
ploit its di�erent properties. Natural diamond has a similar crystalline
structure to synthetic diamonds but provides some peculiar advantages
compared to its synthetic counterpart. Naturally occurring diamond is
rid of metallic inclusions that a�ect its electrical conductivity. Many
synthetic types of diamond contain higher impurity concentrations that
lead to discolouration and make diamond more ductile [117].

5.1.3 Di�erent types of diamond

Diamond is commonly classi�ed into two main and further subtypes de-
pending upon the nature of defects and impurities present where the
concentration of impurities is generally represented as parts per million
(ppm). The two main types are termed as type I and type II where type
I is mostly naturally occurring diamond with a higher nitrogen concen-
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tration whereas, type II is synthetically produced and is quite rare in
nature. This classi�cation of diamond is also indicative of the nitrogen
concentration, which is much larger in type I as compared to type II.
Type I consists of two subtypes, type Ia and type Ib, where type Ia
is further subdivided into two more subtypes; type IaA and type IaB.
Table 5.1 represents this classi�cation of diamond based upon nitrogen
con�guration and concentration.

Table 5.1: Types of diamond with subsequent sub-types [118].

Type I Type II
Naturally occurring (>98%) Synthetically Prepared (rare in nature)
High Nitrogen concentration Very low Nitrogen concentration

100 - 3000 ppm < 5 ppm
Two further subtypes Two further subtypes

Type Ia Type Ib Type IIa Type IIb
Aggregated Nitrogen Single substitut- Nitrogen is the Boron is the

ional Nitrogen major impurity major impurity
< 3000 ppm < 500 ppm <∼1 ppm <∼1 ppm

Electrically insulating p-type semiconductor
Two further subtypes

Type IaA Type IaB
Nitrogen in Nitrogen in

A aggregate form B aggregate form

5.1.4 Defect centers in diamond

Defect centers in diamond are caused by impurities, lattice irregularities
and imperfections. More than 500 di�erent kinds of defect centers have
been discovered in diamond and a number of them have been shown to be
stable single photon emitters at room temperature. These include Silicon
vacancy centers (SiV), Chromium related centers, Nickel related centers
(NE8) and the Nitrogen vacancy center (NV) among others. These defect
centers are photo-stable at room temperature with emission properties
that di�er widely from each other. For instance, the NV center has a
broad emission range (>100 nm) with a zero phonon line (ZPL) at 637
nm. On the other hand, the NE8 centers and SiV centers have shown
narrow ZPLs around 800 and at 738 nm respectively [15]. NE8 centers
are hard to fabricate at a single crystal level due to the demand for four
nitrogen atoms to form a complex with the nickel atom [119] and are not
ideal from a scalability perspective. SiV centers initially su�ered from
low emission rates due to a high temperature dependent nonradiative
decay term, rendering them unattractive from an implementation per-
spective. However, recently SiV centers in nanodiamond crystals grown
using the CVD process have shown exceptional single photon source
traits (brightness and narrow linewidth of emission) [120] making them
highly attractive for the task. In the same perspective, NV centers have
also been observed to be highly stable single photon emitters that do not

81



photo-bleach under continuous intense optical illumination. In addition,
the electronic structure of NV centers has shown aspects that allows its
electron spin state to be optically polarized, coherently manipulated us-
ing microwave radiations and protectively read out. Even though NV
centers have excellent magneto-spin properties that make them attrac-
tive for quantum computation and network applications, here NV centers
are exclusively studied from the standpoint of a single photon emitter.
For this purpose, optical properties of single NV centers in nano and
bulk diamond samples have been investigated. Moreover, almost all po-
tential applications depend considerably on increased photon collection
e�ciency of the NV center emission and di�erent methods to enhance
this collection e�ciency are also been explored.

5.2 Nitrogen-Vacancy (NV) center

The NV center is a molecular structure in the band gap of diamond that
is optically accessible with a ground and excited state gap of around 2
eV. It is shown to be optically stable and does not photo-bleach under
continuous optical excitation. This is important for applications that
demand high but stable single photon count rates for prolonged periods
of time. Moreover, the ground state electronic spin of the NV center
is stable at room temperature, can be optically initialized, coherently
manipulated and optically read out. In addition, advance fabrication
methods for NV creation along with the demonstration of long spin co-
herence times (≈ 0.6 s [121]) and coupling to surrounding electronic and
nuclear spins make NV center a promising qubit candidate and is con-
sidered to be a potentially promising building block for a wide range of
applications such as quantum computers [122], highly sensitive magnetic
[123�125] and electric �eld [126] sensors, stable single photon sources for
quantum communication protocols [20] and in-vivo markers for biological
cells [127].

5.2.1 Physical and electronic structure of an NV center

NV centers are usually formed inside a diamond lattice when a substi-
tutional nitrogen atom ends up with a vacancy in one of the adjacent
lattice sites (see Fig. 5.2) orientated along the [111] crystalline direction
[128]. Nitrogen is a paramagnetic defect and is a major impurity in nat-
urally occurring diamonds where single NV centers are formed overtime
due to the migration of vacancies to the nitrogen atom sites [129]. A
commonly used method to create NV centers in diamonds with high ni-
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trogen concentration is high energy electron irradiation. This results in a
homogeneous vacancy density inside the diamond and upon annealing at
high temperatures ∼ 800◦C for a prolonged period of time, these vacan-
cies become mobilized and are trapped by the substitutional nitrogen,
forming NV centers [128]. It is a regularly used procedure for creating
NV centers in nanodiamonds [130]. Synthetically produced diamonds
also contain NV centers that are formed during the growth process. Ul-
tra high purity diamond samples (type IIa) on the other hand, contain
a very small quantity of NV centers with apprximately one NV center
every 104 µm3 [115]. In these ultra pure samples, one commonly used
method to create NV centers is through the implantation of nitrogen ions
at high energies (several Kev or MeV) inside an accelerator. Vacancies
and carbon interstitials are created through collisions as these ions come
to rest inside the sample. Most of these ions stop at interstitial positions
and upon annealing, NV centers are locally formed [131].

Figure 5.2: (a) Schematic structure of an NV center in the diamond lat-
tice. The substitutional nitrogen atom (brown) is adjacent to the vacancy
(pink hollow) and the three nearest carbon atoms in black are shown.
(b) The NV center along with the adjacent carbon atoms in the adopted
coordinate system where NV center's symmetry axis is along the z-axis.
Figures are reproduced from [132]

.

The physical structure of the NV center (Fig. 5.2) is quite impor-
tant as it determines the nature of its electronic state and the permitted
electric dipole-dipole interactions between these electronic states. NV
centers have been shown to posess C3ν symmetry [128] where the nitro-
gen atom and the vacancy form a symmetry axis. The C3ν symmetry
governs the nature of its electronic states that depends upon their trans-
formation under C3ν operations. Under these operations, the diamond
lattice surrounding the NV center is invarient under rotations of 2πn/3
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performed around the vertical symmetry axis (z-axis) of the NV center.
It is also invarient under re�ections in the three planes containing the
vertical symmetry axis and the nearest carbon sites in the diamond lat-
tice [107]. The nature of the electronic states is determined under such
operations where both the electronic ground and excited states form spin
triplet states (S=1). Likewise, the resulting optical and spin properties
of the NV center depend greatly upon the characteristic electronic states
structure.
An NV center usually exists in two charge states, the neutral state NV0

and the negatively charged state NV−. In the neutral state NV0, it ex-
hibits a zero phonon line (ZPL) at 574 nm [133] whereas the negatively
charged state exhibits a zero phonon line (ZPL) at 637 nm, corresponding
to an energy of 1.945 eV [134; 135]. Both charge states are photostable
and co-exist [136] but depending on the Fermi level inside the lattice,
one of them dominates the other [137; 138]. Moreover, the two charged
states have been shown to transform depending upon the excitation en-
ergy and intensity. This phenomenon is known as photochromic e�ect
and describes the photon induced change in the state of NV center due to
a change in the band gaps between two charge states [133; 139; 140]. The
work performed in this thesis targets exclusively the negatively charged
state (NV−) as this is the state with desired properties for many appli-
cations [141]. Keeping this in mind, from now on the negatively charged
state NV− will simply be referred to as the NV center.
In the charged state, the NV center has six electrons associated with it
and an electron spin of S = 1 in the ground and excited states [142].
Out of these six electrons, two are the valence electrons from the nitro-
gen atom, three are associated with the dangling bonds of the carbon
atom surrounding the vacancy [143; 144] and the �nal electron is trapped
from the diamond lattice (from a nearby substitutional nitrogen atom or
surface states). The electronic con�gurations of the ground and excited
states are well known and can be explained using either the six-electron
model [135; 143; 145] or the two-hole model [146].
The electronic structure of an NV center can be characterized by a three-
level energy model (see Fig. 5.3) consisting of a ground state 3A2, excited
state 3E and intermediate singlet states 1A1 and 1E.

The electronic ground state 3A2 is a spin triplet state where the cor-
responding spin-spin interactions lead to a �rst order splitting of the
3A2 [142; 143; 147]. The resulting �ne structure levels are denoted by
their spin-orbit symmetry and (ms = 0,±1) spin projections [132] where
ms is the quantum number of the spin projection along the symme-
try axis of the NV center. Dgs represents the splitting between the
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ms = 0, ms = ±1 spin projections and is equivalent to ∼ 2.87 GHz at
room temperature. Dgs, sensitive to temperature and pressure changes,
is commonly referred to as zero �eld splitting (zfs) in the absence of
an external magnetic �eld or other perturbations. This �ne structure
splitting of the NV center's ground state was �rst demonstrated using
electron spin resonance (ESR) measurements in the late 1970s [148; 149].

The electronic excited state 3E can be described as a spin triplet
(but an orbital doublet) at room temperature with a zero-�eld splitting
of 1.42 GHz in the absence of any external magnetic �eld. Moreover, the
degeneracy of ms = ±1 states for both the 3A2 and 3E states can be
lifted by applying an external magnetic �eld along the NV center's sym-
metry axis. This Zeeman splitting appears in the form of two resonances
in the ESR measurements and the corresponding frequency splitting is
dependent on the strength of the applied �eld.

Figure 5.3: (a) Simpli�ed electronic structure of NV center at room
temperature with the two ZPL transitions shown in red and black respec-
tively. The PSB is also shown in orange. (b) Six level scheme of the NV
center. Solid red lines indicate radiative transitions between the ms = 0
and ms = ±1 states. The dashed lines and the dotted lines indicate the
strong and weak non-radiative transitions through the singlet states. (c)
Zeeman slitting of the ms = ±1 spin ground and excited states in the
presence of external magnetic �eld is shown.

The previously stated orbital doublet nature of the excited state is
often ignored in the context due to the e�ective averaging of the spin
properties of the orbitals at room temperature, caused by the rapid inter-
orbital transitions within the excited state [150]. The room temperature
�ne structure of 3E was �rst experimentally reported by Epstein al. in
2005 using optically detected magnetic resonance (ODMR) studies of
single and ensemble color centers [151]. Studies have shown that the 3E
�ne structure level is considerably di�erent at cryogenic temperatures as
compared to the room temperature �ne structure. This is attributed to
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the phonon dependent averaging of the low temperature �ne structure
branches that result in the observed room temperature �ne structure
[150]. These details however are deemed beyond the scope of this thesis.

Furthermore, there exist metastable spin singlet states (1A1 and 1E)
between the excited and ground states [142; 152; 153]. These interme-
diate singlet states play an important role in the spin-dynamics of NV
center under optical excitation [154], which will be addressed in the next
section. The existence of the intermediate singlet states was �rst demon-
strated in [155] through the observation of a ZPL at 1042 nm (1.190 eV),
representing a transition between the 1A1 and 1E states under optical
excitation (excitation energy > 1.945 eV). However, the ZPL associated
with the 637 nm transition is approximated to be 104 times stronger than
the 1042 nm infrared band transition. In comparison to this, the passage
through the metastable state can be considered as a dark process and
in light of the experimental studies that are carried out in this thesis, it
is su�cient to review the intermediate singlet states as one metastable
state. The above discussion of NV center's electronic structure would be
incomplete without addressing the excited state lifetimes that di�er in
bulk and nanodiamonds. For nanodiamonds, the reported excited state
lifetime is approximately ∼ 25 ns whereas for the bulky counterparts, it
is ∼ 12 ns for the ms = 0 spin projection and ∼ 8 ns for the ms = ±1
state. The lifetime of the upper intermediate singlet state is reported
to be � 30 ns whereas the for longer lived lower intermediate state is
about ∼ 300 ns [142].

5.2.2 Accessible optical transitions

The band gap between the ground and excited triplet states is ∼2 eV and
a ZPL emission at 637 nm (1.945 eV) represents the 3A2 to 3E transitions
(Fig. 5.3). The observed emission spectrum from an optically excited
NV center is quite broad (637 nm - 750 nm) with an emission peak
around 675 nm. This broadness arises from the presence of a continuum
of vibronic states and is attributed to the excitation and absorption of
a local vibration of NV center [128]. The vibronic excited states appear
at higher frequencies in absorption and lower frequencies in emission
such that, under o�-resonant laser (above-band excitation with 532 nm)
excitation of these vibronic states, the NV center relaxes into one of
the electronic excited states through phonon emission [107]. This seems
to occur due to the extremely small lifetime of the vibronic states (≪
1 ps) as compared to the excited state lifetime, which is in nanoseconds
and the ensuing emission of an NV center is primarily into the phonon
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sideband with a large full width half maximum (FWHM). The emission
into the ZPL is very small and even at cryogenic temperatures (< 10
K) accounts for ∼ 4% of the total emission [156]. The detection of NV
center �uorescence is made possible due to the high quantum e�ciency
of radiative relaxation (η ∼ 0.99) and the relatively short excited state
lifetime.

5.2.3 Spin dependent optical transitions

Using o�-resonant coherent optical excitation at room temperature, both
the ms = 0 and ms = ±1 transitions can be excited and the correspond-
ing radiative decay from the excitedms = (0,±1) states is primarily spin
conserving (see Fig. 5.3). In addition, there are means for non-radiative
decay to the ground state through the intermediate singlet states where
the strength of these non-radiative transitions depends on the initial spin
projection. The radiative decay from the ms = 0 excited state is spin
conserving along with a weak possibility of non-radiative decay through
the singlet states. The non-radiative decay through the intermediate
singlet states leads to spin-�ips under optical cycling [132; 142; 157] but
occurs mostly for the ms = ±1 states. This leads to a population shelv-
ing into the singlet states and creates darker periods between the excited
and ground states due to the much larger lifetime of the intermediate
state. This behaviour is shown to be especially prominent under intense
optical excitation and is also responsible for the bunching e�ect observed
in the �uorescence autocorrelation functions of NV centres [158].

The decay of the singlet states is inherently dark [159] and is mostly
into the ms = 0 ground state. This allows for the optical initialization
and polarization of the NV electron spin into the ms = 0 state using
o�-resonant excitation, followed by short durations (µs) of no optical
excitation. Published studies have indicated an estimated spin polariza-
tion between 80% and 95% using this method [157; 160]. The ground
state spin polarization represents the preparation �delity of the qubit
and is an important parameter for the operation of the qubit. In addi-
tion, as the non-radiative decay through the singlet states is stronger for
thems = ±1 excited states, the resulting �uorescence intensity varies de-
pending on the spin projection. A �uorescence intensity contrast between
20%− 40% has been reported in di�erent studies [129; 142; 161; 162] for
the two spin projections. This spin-dependent change in �uorescence
intensity provides a clear information of the spin state of the NV center.
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5.2.4 NV center as an electron spin qubit

In the previous section, we discussed the suggested spin state dependent
relaxation mechanism of the NV center making it possible to optically
initialize and readout the electronic spin state. The electronic spin can
also be readily manipulated under an applied microwave �eld, which is
in resonance with the spin transitions (Dgs = 2.87 GHz). Continuous
o�-resonant optical excitation polarizes the spin to the ms = 0 level and
a microwave �eld resonant to the spin transitions (between ms = 0 to
ms = ±1) shifts the population between these two levels thus e�ectively
enacting a two-level system. This population reorganization results in
a decrease in the �orescence level (Fig. 5.4a) and can be driven in the
absence or presence of an oscillating external magnetic �eld (B) applied
perpendicularly to the spin quantization axis of the NV center. This
electron spin resonance can then be optically read out and lies at 2.87
GHz (zero B �eld) or is indicated by two frequency separated transitions
due to the lifted degeneracy of the ms = ±1 states in the presence of
an external B �eld (Fig. 5.4a). This separation between the transitions
depends on the strength of the external magnetic �eld and is quanti�ed
as 2γB. Here γ is the NV gyromagnetic ratio and is equal to 2.80 MHz
G−1.

Figure 5.4: (a) Optically detected magnetic resonance (ODMR) spec-
trum of the NV center showing the two resonances in the presence of a
small magnetic �eld (≈ 12 G) [163]. (b) Induced Rabi oscillations between
the electronic spin ground states ms = 0 and ms = ±1.

Furthermore, under resonant microwave excitation, one can drive
Rabi oscillations (population oscillations [164] between the ground ms =
0 and excited ms = ±1 states, indicating a complete state transfer be-
tween the two spin states. The Rabi oscillations depend heavily on the
applied microwave power and the correct microwave �eld frequency. An
example of these population oscillations is presented in Fig. [5.4b].

It is pertinent to stress here that although preliminary work has
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been done in this aspect showing the above optically detected magnetic
resonance spectrum and Rabi oscillations, it is merely presented here
as an introduction to the suitability and desirability of NV centers as
a reliable and attractive electron spin qubit system. For this thesis, we
have chosen to focus on the single photon emission attribute of the NV
center and exploring di�erent methods to enhance the emission collection
e�ciency from the NV centers.

5.3 Increased photon collection e�ciency

Quantum technologies as secure quantum communication and quantum
key distribution require very bright, on-demand and robust single photon
sources at room temperatures. Additionally, other targeted applications
as quantum networks and quantum computation, sensing and quantum
enhanced metrology (QEM) strongly crave that the spin state informa-
tion is read out before it decoheres. It is therefore not surprising that
all these applications place a strong demand on a high photon detection
e�ciency of the NV center emission.

Even with the use of objectives with high numerical apertures (oil
or water), the biggest hindrance in achieving high photon collection e�-
ciency arises from refraction and aberration losses at the air-diamond in-
terface caused by the large refractive index mismatch. The angle for total
internal re�ection (TIR) at the interface is θTIR = arcsin(1/nd) ≈ 25◦

and severely limits the angular collection capacity of the microscope
objective by reducing the solid angle between within which emitted pho-
toluminescence can be collected. The goal is to come up with methods
that not only lead to a collection enhancement but also do not degrade
the spin coherence due to any inherent negative e�ects. In this regard, a
number of di�erent methods have been proposed to increase the collec-
tion e�ciency. For nanodiamond crystals, it was shown that if the size of
nanocrystals is chosen to be small enough then the NV center e�ectively
emits into the free space [165; 166]. This method resulted in an increase
in photon collection by a factor of 5 as compared to the previous results.
In another scheme, nanodiamonds containing single NV centers were spin
coated on the �at surface of commercially available hemispherical lenses
(radius=1 mm) made of cubic zirconia (ZrO2). The emitted photons
were collected from the curved side and high saturation counts ≈ 850
kcps (stable emitter) and upto 2.4 Mcps (blinking NV) were reported
under continuous optical excitation [167].

A number of methods to enhance the photon collection in bulk dia-
mond have also been explored. In one such method, top down fabrcation
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of nanowires (∼200 nm diameter and ∼2 µm length) through electron
beam lithography (EBL) and reactive ion etching (RIE) in a type Ib
diamond was used and a collection improvement by a factor of 10 was
reported using this method [168].

Millimeter sized hemispeherical lenses [169; 170] on top of the sample
surface and using millimeter scale hemispherical lenses milled in diamond
[171] are other examples to improve the collection e�ciency. However,
there are some downsides as the former su�ers from losses due to the
hemispherical lens and sample surface mismatch, surface re�ections and
gaps between the surfaces whereas the latter is highly time consuming,
requires extensive machining and is unattractive from a fabrication point
of view. One alternate solution is the fabrication of micrometer scale
solid immersion lenses (SILs) through focused ion beam (FIB) milling
in diamond and an overall increase by a factor 10 has been reported
[172; 173] using these micro SILs. In the next section, more details
about this method will be provided.

In another method, vertical nanopillars in diamond membranes (30µm
thick) were fabricated and structured using EBL and RIE. With a re-
ported photon �ux up to 1.7 Mcps at the time, this was the brightest
reported monolithic bulk diamond structure based on single NV cen-
ters [174]. This is one of the utilized alternatives in this thesis and the
fabrication details and photon collection enhancement from such nano-
engineered diamond waveguides are covered in detail in the next chapter.

Other examined methods for increased photon �ux from NV centers
in bulk diamond include the use of optical antennas [175] and silicon diox-
ide gratings [176] where both these methods reported >0.5 Mcps. Lastly,
a recently demonstrated circular diamond "bullseye" grating structure
reported the highest recorded photon collection rate from an NV center
at saturation (4.56 Mcps) [177]. It is apparent that the advancement
in fabrication techniques and technological capacities have greatly con-
tributed to enhancing the photon collection from NV centers making
them more viable and thereby increasing their feasibility for implemen-
tation in quantum technologies.

5.3.1 Microscale solid immersion lenses (SIL)

Etching micrometer diameter hemispherical lenses, fabricated into a bulk
diamond plate, has become one of the most commonly utilized approaches
for enhancing photon collection from NVs in bulk diamond. These SILs
are milled into the diamond surface using FIB and have been extensively
used in recent demonstrations of novel experiments involving NV centers
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[45].
In [178], the collection e�ciency from an NV center inside a pla-

nar diamond surface (≈ 5.6%) and at the centroid of a hemispherical
lens (≈ 28.6%) were calculated using the �nite-di�erence time-domain
(FDTD) method. Their estimated e�ciencies are comparable with the
analytical results of [179] and show a large enhancement in collection ef-
�ciency by employing microscale etched SILs. Photoluminescence from
a color center at the centroid of a hemispherical SIL is perpendicular
to the surface over the whole 2π solid angle of the hemisphere. The
rays leave SIL in a direction normal to the SIL surface and are not re-
fracted (see Fig. 5.5). The NA of collection is then enhanced by a value
equivalent to diamond's refractive index (nd = 2.42) [180]. A microm-
eter SIL etched into the diamond surface leads to the advantage that
the refraction losses from the air-diamond interface can be avoided due
to the hemispherical geometry. This considerably enhances the collec-
tion e�ciency and by etching such micrometer SILs, Hadden et al. [172]
reported an enhancement of the photon �ux by a factor of 10.

Figure 5.5: (a) Propagation of rays for a dipole (parallel orientation)
under planar diamond surface. na = 1 and nd = 2.42 are the refractive
indices of air and diamond respectively. θc represents the critical angle of
incidence. (b) Ray propagation for a dipole (parallel orientation) at the
centroid of a hemispherical lens.

In [178], it was also reported that the position of the defect center
with respect to the SIL centroid is an important parameter and the
photon collection decreases signi�cantly with a > 1 µm displacement, in
any direction, from the focal point of the hemisphere. This is caused by
the optical aberrations that occur due to the less than ideal positioning
of NV center at the SIL's centroid [181]. For the purpose of increasing
collection e�ciency, it is thus vital that the fabrication process of a
microscale SIL is accurate to about 1 µm. The collection e�ciency can
be further increased by the use of an anti-re�ective (AR) coating on the
SIL surface.In the next chapter, a detailed account of accurate fabrication
of SILs with respect to single NV centers and the resultant increased
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photon �ux will be presented.

5.3.2 Nano-pillars in diamond membranes

Another reported method for enhanced photon �ux collection involves
the fabrication and structuring of nanopillars in diamond using EBL
and RIE was presented in [174]. Their fabricated nanopillars were ∼1.2
µm long, with a top diameter of ∼400 nm and a bottom diameter of
∼900 µm. As mentioned above, at the time, this demonstration was the
brightest reported monolithic structure for single NV centers. In addi-
tion, the defect center's spin coherence properties were observed to be
una�ected during the fabrcation of the canonical geometry. An enlarged
detection of the photon �ux is made possible as the NV emission couples
to the fundamental HE11 mode of the waveguide, which is then guided
backwards and collected by the microscope objective lens (see Fig. 5.6)
underneath the thin diamond sample [174; 182]. Hence, this approach
is attractive as the nanopillars behave as waveguides that not only al-
low e�cient excitation of the NV but also enhance the emitted photon
collection.

Figure 5.6: A canonical waveguide with top and bottom diameters of
∼400 nm and ∼900 nm. The excitation and PL emission is collected from
the bottom surface.

Such structures show great potential and promise signi�cant improve-
ment over other present day capabilities especially concerning the sensing
applications (magnetic �eld [123], electric �eld [126], temperature [183],
strain [184]) and nuclear magnetic resonance (NMR) experiments [185�
188] based on NV centers. For greater sensing sensitivity, the positioning
of NV center with respect to the surface is important and such nanopil-
lars are fabricated in very thin diamond membranes (<30 µm) where the
NV centers are created very close to the surface (shallow NVs) through
ion implantation and an annealing process. In this thesis, these tapered
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waveguides are fabricated and section 6.4 covers the ion implantation
and fabrication procedure followed by the excitation and detection of
single NV centers in these nanoengineered waveguides.
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6. Experimental Studies of an
NV center

In the previous chapter, a brief overview of some of the important proper-
ties of NV centers was presented. This allows us to envision the potential
role of NV centers in future quantum technologies such as quantum com-
putation, secure quantum communication protocol based devices, stable
and robust single photon sources, quantum registers and memories, that
will be integral for future photonic networks.

All of these applications require high grade and ultra pure diamond
samples along with the capability to precisely control the NV center
positioning and scalability. This is vital for the spin coherence proper-
ties that are important for many quantum information applications. In
addition, we must be able to excite, probe and optically address single
NV centers on demand. Confocal microscopy (CM) is a well-known mi-
croscopy technique that can be used for this task and allows for e�cient
excitation of a single NV center, which consequently leads to high res-
olution imaging and optical detection of the single NV center. It was
�rst used by Gruber et al. for observing individual NV centers in 1997
[129] and since then has emerged as the standard tool used to optically
probe single defect centers. In 2000, Kurtsiefer et al. used CM to demon-
strate a stable single photon source based on an NV center in diamond
[20]. After successfully localizing a single NV center, the individuality
of the quantum emitters was con�rmed by performing an antibunching
measurement using a Hanburry Brown Twiss (HBT) con�guration.

6.1 Experimental setup

In the coming sections, an overview of the necessary experimental details
and the complete experimental setup used in the laboratory is presented.
The working setup consists of a purpose built confocal microscope (for
excitation and detection of the NV center) and a HBT setup used for
antibunching measurements.
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6.1.1 Confocal microscopy of NV centers

Confocal microscope (CM) is a well-known microscopy technique devel-
oped for imaging biological samples, living cells and tissues. Invented in
1957 by Marvin Minsky, it increases the contrast of microscope images
by restricting the observed volume (collection only from a focused spot)
and by discarding the contribution from nearby unfocussed elements.
The basic working principle uses point illumination of a sample and
a pinhole in an optically conjugated plane to eliminate contributions
arising from the unfocussed specimen. As the corresponding excitation
volume coincides with the detection volume, the procedure is termed as
confocal microscopy. This is di�erent from conventional wide �eld mi-
croscopy where the whole sample is illuminated at once and the resulting
photoluminescence (PL) is collected by a detector [189]. The CM tech-
nique results in a slightly better imaging resolution and a higher image
contrast albeit at the cost of a longer scanning and interval time. The
spatial resolution of CM is di�raction limited to an order of wavelength
and hence two neighbouring NV centers can only be individually distin-
guished if the distance between them is larger than that. Our interest
in using CM as a tool solely lies in its capability to selectively excite
and probe individual NV centers through optical sectioning and elimi-
nation of the defocussed light. As confocal microscopy has been around
for a long time, it is a well known and an extensively used imaging pro-
cedure whose advantages and general use has been covered in depth in
numerous manuscripts and books [190]. In regards to this, only a con-
cise functional insight is provided here and instead the emphasis is to
elaborate the technical description and operation of the purpose built
confocal microscope setup used in our experiments.
The employed CM setup is di�erent to conventional confocal microscopes
in the sense that we have replaced the standard pinhole with a standard
single mode �ber (SMF) where the core of the �ber acts as a pinhole to
reject any out of focus light. The advantage of using a SMF as a pinhole
is twofold. Firstly, it allows for e�cient rejection of unwanted light and
optimal mode matching between the optical mode collected from the NV
center and the mode of the �ber. Secondly, along with ease of alignment,
using the SMF enables us to use this single spatial mode e�ciently in any
scheme possible. The confocal microscope setup used in our experiments
is shown in Fig. 6.1. For some measurements, that were performed dur-
ing my stay at Pi3 institute at the University of Stuttgart (indicated by
color scans), the confocal microscope had a standard pinhole of 50 µm
diameter instead of a SMF. All the used components utilized for both
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CM setups are o� the shelf components.

Figure 6.1: (a) Schematic representation for the confocal setup used for
optical detection of NV centes in diamond. (b) The experimental setup
built in the lab.

Optical probing of a given sample requires an appropriate pump
laser. For our setup, the excitation laser is a (25 mW ) 532 nm, Cobolt
Sambar, continuous-wave (CW) diode-pumped solid state laser (DPSSL).
It provides a single longitudinal mode with a high level of stability, low
noise, a narrow spectral bandwidth and a long coherence length.

Emitted laser light is coupled into a SMF, using a standard �ber
coupling lens. The other end of the SMF lies at the focal point (35 mm)
of a plano-convex lens, which collimates the pump beam. Control of
beam diameter is important so that it can matched to the aperture of
the microscope objective used to image the sample. It is ensured that
the excitation beam has well-de�ned spectral properties by the use of
a spatial �lter (∼10 nm bandwidth around 532 nm). The laser beam
arrives at a dichroic mirror, which separates the incident light from the
photoluminescence (PL) of the NV center by re�ecting the excitation
wavelength but transmits the photoluminescence spectrum through it.
A high numerical aperture (NA) microscope objective focuses the incom-
ing light to a di�raction limited spot (∼ λex

2NA) and is used to excite and
collect the ensuing �uorescence from a single NV center. This objective
is one of the most important components of the microscope where the
resolution and photon collection e�ciency depends upon its NA. The
term numerical aperture is a measure of the acceptance angle of an ob-
jective and is de�ned as nsinθ. n here is the refractive index of the
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immersion medium (air, water, glycerol or oil) and θ is the maximum
1
2 acceptance solid angle of the objective. An oil or water immersion
medium is required to achieve numerical apertures greater than 1. An
objective lens of larger NA, has higher resolving power, collects more
light and therefore provides a brighter image, with a narrower depth of
focus as compared to a lens of lower NA. The resolving power is an im-
portant parameter as it determines the limit of resolution, i.e., minimum
detectable distance between two points. Another important factor for
objectives is the magni�cation (M) of the objective and is de�ned as
ratio of the size of the magni�ed object image to that of the object.

The microscope objective used in our setup is "Nikon Plan Fluorite",
which produces a �at image across the �eld of view (FOV) and is cor-
rected for aberrations (both spherical and chromatic) for a number of
wavelengths. It is an oil immersion objective with a NA of 1.3, a mag-
ni�cation value of 100X and a working distance of 0.16 mm between the
front element of the objective and the sample surface. For 3D imaging of
the sample, a scanning system with fast and precise positional accuracy
(nm range) is required. In our confocal microscope, a high scan rate is
achieved through the movement of the sample in the x and y plane with
the rest of the optics �xed. The objective is mounted on a high resolution
lens positioning system from Jena (MIPOS 100) with a motion range of
100 µm that enables scanning along the z-axis. The lens positioning sys-
tem is used in a closed loop feedback con�guration, has high resolution
(2 nm) and provides a positional accuracy of ±6 nm. This positional
accuracy is fundamental for the excitation of single NV centers. The
samples to be probed are mounted on a 2D xy positioning system from
Jena (PXY 201 CAP) that utilizes a capacitive feedback sensor tech-
nology to achieve a positional accuracy of 1 nm. It is used in a closed
loop feedback con�guration and provides a positional repeatability of
±10 nm. This xy scanner facilitates 2D imaging of the sample, with a
maximum scanning range of 200 × 200 µm2, in a plane normal to the
optical path. The closed loop con�guration is chosen as it compensates
the mechanical drift of the focal plane due to thermal e�ects.

Upon laser illumination, the PL from the excited NV center is �rst
extracted and then collimated by the same microscope objective excit-
ing the NV center. The emitted �uorescence is transmitted through the
dichroic mirror (Fig. 6.1), �ltered appropriately to eliminate any con-
tribution from scattered light and to collect emission in a short range
(630 - 750 nm). An eyepiece lens with a NA of 0.25 and magni�cation
of 10X e�ciently couples the arriving �uorescence light to the core of
a SMF (Thorlabs, 600-800 nm). The position dependent PL measured
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by the system is mapped onto a single photon counting module (SPCM,
Perkin-Elmer SPCM-AQRH-14) by using a SMF. The SPCM used is a
silicon avalanche photo diode (APD) and such modules are commonly
selected for single photon detection in the near-infrared region. The
APDs operate in Geiger mode and the working principle exploits the
photoelectric e�ect such that the detection of a single photon leads to an
avalanche breakdown in a reverse biased diode. The used APDs showed
dark counts below 100 Hz, a detection e�ciency of 65% at 650 nm and a
dead time of ∼50 ns between detection events. The setup also contains
�ipping mirrors that enable optical spectrometer measurements and the
visualization of the re�ection beam from the sample surface through a
µ-eye CCD camera (Thorlabs).

A custom coded software in tool command language (tcl) was used for
scanning control of the confocal system. In addition to the on-demand
scanning functionality, an automated stabilization module is also incor-
porated to overcome any mechanical drifts in the system. The stabiliza-
tion module works by monitoring the position of the single NV center
through routinely scheduled scans such that the position of the NV cen-
ter is periodically updated and the system therefore does not lose focus
over time. This module has proven vital in performing longer time mea-
surements on NV centers.

6.1.2 Single photon emission

Fluorescence emission from the excited NV center is used for a range of
measurements and can be utilized in di�erent detection schemes. The
�uorescence intensity can be measured directly after the SMF especially
in cases where the spin state readout of the NV center is desired. This
is straightforward considering that the spin of the NV center is initially
polarized into the ms = 0 state under constant optical excitation and
the �uorescence intensity is dependent upon the spin projection. Many
experiments require that the spin state read out is performed at speci�c
times and the �uorescence measurements must be resolved in time. For
this purpose, the collected emission is coupled directly to the SPCM for
post processing.
In other scenarios, con�gurations such as the HBT are also used. A stable
single photon emitter, upon relaxation, will emit only one photon at a
time. The photon statistics of the detected PL must then be analyzed to
ensure that it corresponds to that of a single emitter. For a given delay
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τ between consecutive photons, time histograms of detected photons
can be used to examine the photon distribution close to zero delay. In
case of a single quantum emitter, the probability for a delay τ between
successive photons should vanish as τ → 0 and an estimation of the
second order auto-correlation function (g2(τ)) is pivotal in identifying
this behaviour. The measurement yields the probability of detecting a
photon at time τ conditional on the detection of another photon at time
τ = 0. This leads to a two-time expectation value for the �uorescence
intensity, <I(0)I(τ)> [107]. Normalizing the above expectation value to
the overall photon intensity <I> provides the value of the second order
correlation function for a stationary process

g2(τ) =
< I(0)I(τ) >

| < I > |2
(6.1)

where g2(0) reveals the number of simultaneously existing photons.
g2(0) < 0.5 is considered a signature of a single photon source as for
an n-photon number state |n> and time τ → 0, g2(0) value scales with
(1− 1

n) [191].

In the lab, g2(τ) values can be measured by implementing a HBT
con�guration that allows the measurement of temporal correlations be-
tween arriving photons. At the input of the HBT, a 50/50 beam splitter
(BS) splits the incoming photons equally into the two spatial modes of
the BS. Afterwards, photons in both modes pass through two identi-
cal bandpass �lters (SEMROCK 450-750 nm) before being collected by
multi-mode �bers (MMF). The MMFs are connected to two independent
SPCMs (Perkin-Elmer ARQH-14) that record the arrival of individual
photons. Spatial �lters are used to suppress any unwanted photons along
with any infrared photons generated by the APDs upon breakdown [192].
The outputs of the two SPCMs are connected to the input channels of an
autocorrelator instrument (PicoHarp 300) that records the time interval
between detection events on the two SPCMs. Whenever a photon is de-
tected at input channel 1 of the autocorrelator, a timer is started and
will not be stopped until a photon is detected at the other input channel.
Time τ elapsed between the two signals of the SPCMs is measured in
this way. By varying the time delay between the detection events in the
two detectors and using the data collected by this PicoHarp instrument,
the second order correlation function g2(τ) can be measured. The HBT
setup used for these measurements is shown below in Fig. [6.2].
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Figure 6.2: (a) Schematic representation for the HBT setup used for mea-
suring the value of normalized second order correlation function (g2(τ)).
(b) The experimental setup built in the lab.

6.2 NV centers in diamond nanocrystals and bulk dia-
mond

In the following sections, NV centers in both diamond nanocrystals and
bulk diamond are studied. Excitation and emission from localized NV
centers is presented in both cases. Furthemore, antibunching measure-
ments, by the evaluation of g2(τ), are performed to con�rm that we
observing single NV centers.

6.2.1 Diamond nanocrystals

During the course of this work, several NV center samples from both
natural and synthetic nanodiamond powders of type Ia and Ib were
used. Some of these nanodiamond powder samples include Micron+
MDA (type Ib), from Element 6, produced from selected metal bond
diamond raw material and the resulting individual particles are abra-
sive and blocky [117]. Another sample used is the Liquid Diamond
GAF (guaranteed agglomerate-free), from microDiamant (Switzerland),
where a liquid-diamond solution is prepared by mixing diamond powder
in deionized water. This liquid diamond solution is provided in a high
concentration of monocrystalline diamond with a mean diameter of 25
nm. Additionally, SYNDIAr SYP monocrystalline nanodiamonds pro-
duced by VAN MOPPES (Switzerland) with a median size of 25 nm were
also used. These synthetic nanodiamond crystals are made out of type
Ib diamond with a purity > 99.5%.

The use of nanocrystal diamond powder was initially preferred over

101



bulky diamond substrates. A stable single photon source with a high
count rate is highly desirable and the emission rate from nanodiamonds
was shown to be more than that of bulky diamonds. Another advantage
of nanodiamond crystals is that the reported lifetime of the excited state
is ≈ 25 ns whereas the excited state lifetime in bulky diamonds is ≈ 11.6
ns [193]. The lifetime is approximately half in the case of bulk diamonds
as the center radiates in a medium of high refractive index (nd=2.4)
whereas for very small nanocrystals, the NV e�ectively radiates in air.
Additionally, the high refractive index of diamond severely limits the
photon collection e�ciency from bulky diamonds due to the TIR at the
air-diamond interface. In order to increase the photon collection e�-
ciency and count rate from bulky diamonds, several enhancement tech-
niques such as solid immersion lenses (SIL) or nanopillars [171; 172; 174]
have been used and this was addressed in the previous chapter. The
refraction issue can be avoided in very small sized nanodiamond crys-
tals; where a nanodiamond solution is usually spin coated on a standard
microscopic glass slide such that a single NV center in a nanocrystal acts
as a point source surrounded by air. The emission from this point source
can then be easily collected using a microscope objective. Immersion
objectives (water and oil) are also used to increase the photon collec-
tion e�ciency as they provide a high numerical aperture leading to high
resolution imagery and increased photon collection e�ciency.

6.2.1.1 Sample preparation

The diamond sample used, Syndia SYP 0-0.05 nanodiamond (Fig. 6.3a)
by VAN MOPPES (Switzerland), is a synthetic diamond powder pre-
pared by the HPHT process. Diamond crystals are monocrystalline, pure
(> 99.5%), with a very low nitrogen concentration (0.01− 0.05%) [194]
and a median diameter of 25 nm. Bearing in mind the lattice constant
of diamond (3.57 Å), a single 50 nm nanocrystal would contain about
1403 ∼ 3.106 unit cells in total. Furthermore, considering the relatively
low rate of nitrogen impurities and the even lower expected amount of
vacancies, most of the single nanocrystals will contain exactly one NV
center making them highly ideal for addressing individual NV centers.

A very dilute solution of the nanodiamond powder was prepared with
deionized water (to keep the concentration of nanocrystals low). Using a
pipette, droplets of the prepared solution were put on a standard micro-
scope glass slide (0.17 mm thickness) before it was spin coated at 2000
rounds per minute (RPM) to obtain a uniform distribution of nanocrys-
tals on the slide. A two step cleaning process (acetone in an ultrasonic
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bath followed by cleaning with isopropanol in the ultrasonic bath) was
carried out to rid the microscope slide of any additional residue. The
sample was then investigated in a scanning confocal microscope setup.

Figure 6.3: (a) Nanocrystal diamond powder from Van Moppes. (b) A
microscope glass slide spin coated with a diluted nanodiamond solution in
deionised water.

6.2.1.2 Detection of Single NV centers in Nanodiamond Crystals

The prepared sample was securely mounted on a two dimensional xy
positioning stage with the help of a specially designed sample holder.
The excitation laser beam was focused onto the sample's surface. To
estimate the NV center density a broad 2D scan (80× 80 µm2) in x and
y orientation is often performed. Fig. 6.4a shows one such example. As
the surface scan indicated a reasonable NV center density throughout
the scan region, a 10 × 10 µm2 scan of a selected area was then per-
formed (see Fig. 6.4b). This scan indicated the presence of a number
of bright spots in close proximity to each other and the bright spots
showed emission counts matching what would be expected from a single
NV center. Afterwards, all the bright spots were con�rmed to be single
NV centers by performing antibunching measurements and recording the
optical spectra of their photoluminescence through a purpose built spec-
trometer. Three such examples of single NV centers are presented in Fig.
6.5. At τ = 0, the measurements clearly demonstrate a g2(0) value much
smaller than 0.5, con�rming this single emission nature. However, for
�nite delays the g2(τ) value goes beyond 1 exhibiting photon bunching
[158; 195] due to population shelving into the metastable state before
eventually decaying to 1. This electron entrapment by the metastable
state prevents photon emission for that period resulting in a bunching
e�ect at longer times.

103



Figure 6.4: (a) A broad, 80 × 80 µm2 scan, 50 nm lateral step size and
20 ms integration time, of the nanodiamond sample surface, indicating a
dense NV concentration throughout the scanned area. (b) A 10× 10 µm2

scan (20 nm step-width, 40 ms integration time) of a randomly selected
area of the sample. Many bright spots with counts matching single NV
emission are seen.

Figure 6.5: (a) A 2× 2 µm2 (20 nm lateral step size, 40 ms integration
time) scan displaying 3 single NV centers ≈ 1 µm apart from each other.
(b,c,d) Corresponding antibunching measurements from the three spots
(left to right) are shown.
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The bunching behaviour is power dependent and becomes more promi-
nent with increasing excitation powers (spot 1 (∼0.5 mW), spot 2 (∼1.5
mW) and 3 (∼3.5 mW)) as indicated by much larger g2(τ) values around
τ = 0. Regardless of the bunching e�ect, the con�rmation of single NV
centers validates the choice and functionality of a confocal microscope as
a useful tool to excite, probe, isolate and detect individual defect centers
in diamond.

6.2.2 Bulk diamond

In this section, single NV centers in bulk diamond samples are investi-
gated in the CM setup. The used diamond samples were of ultra high
purity, electronic grade, type IIa single crystal plates (4.5 × 4.5 × 0.50
mm) from Element 6 (e6). The diamond surface is cut along the {100}
crystal axis with a nitrogen concentration below 5 ppb and a boron con-
centration <1 ppb. Electron irradiation and an annealing were used to
create nitrogen vacancy centers in the bulk diamond sample where NV
centers were successfully created throughout the diamond surface. The
density of NV centers varied greatly at di�erent depths inside the dia-
mond and as an example, one area with a very high NV center density
is shown in Fig. 6.6.

Figure 6.6: A 100 × 100 µm2 scan of a densely populated NV region
roughly 20 µm below the diamond surface. Zoomed in images of certain
regions are provided for clarity.

Before use in a confocal microscope, the samples were thoroughly
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cleaned in acetone, then isopropanol followed by cleaning in boiling Pi-
ranha solution at 95◦C. Piranha solution, 3:1 mixture of sulphuric acid
(H2SO4) and hydrogen peroxide (H2O2), is a very strong oxidizing agent
and the treatment is quite common for the removal of organic residues
from a substrate surface. A healthy density of single NV centers was
observed and this was later con�rmed by g2(τ) measurements. One such
example from a planar single NV center below the diamond surface is
shown in Fig. 6.7.

Figure 6.7: (a) A 3×3 µm2 scan (30 nm step size, 40 ms integrated time)
of a randomly selected region roughly 7 µm below the diamond surface.
(b) Single emitter presence is con�rmed by the g2(0) = 0.17 value.

6.3 Precise SIL fabrication around single NV centers

The step by step procedure for precisely etching a hemispherical SIL with
a defect center at its origin will now be presented. The samples used are
of the type IIa bulk diamond samples used in 6.2.2. The road map is
straight forward as the FIB is used to mill a grid pattern (100×100 µm2)
of periodic holes (20 µm pitch, d= 2 µm). Each grid pattern is marked at
the corners by crosses and is labelled alphabetically for easy recognition.
Once the sample surface has been etched with multiple such patterned
grid squares, a confocal microscope is used to accurately identify and
locate single NV centers with respect to the holes location in each grid
square. It is important to remember that the placement of NV center
at the origin of a milled sil is quite crucial. This requires that the exact
lateral whereabouts and depth of the NV center must be known and
co-ordinated with surrounding holes before we can proceed to mill a sil
on top of the NV. The employed method provides a very e�cient way
of precisely locating NV centers and accurate milling of a SIL around
them and is based on [173]. Before use in the CM setup, the sample
is cleaned using acetone, isopropanol and in boiling piranha solution
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as before. This is critical as otherwise the background �uorescence from
deposits of gallium and other organic contaminants will mask the markers
during confocal scans. An example of these FIB milled grid patterns and
subsequent confocal microscope imaging of an individual grid pattern is
shown in Fig [6.8].

In the next step, an area of 20×20 µm2 is chosen within a grid square
where the position of these holes is clearly visible.

Figure 6.8: (a)A Scanning electron microscope (SEM) image of the al-
phabatically labeled grid patterns eteched onto the diamond surface using
FIB. (b) Confocal microscope scans of 'A' and 'B' marked squares clearly
indicating the periodic holes that will be used for de�nite NV location.

Single NV centers inside this region at a suitable depth are then
identi�ed as in Fig. [6.9]b. Once an NV center is found, the confocal
co-ordinates of both the NV center and three surrounding holes are ac-
curately recorded. For exact SIL milling, registered to the chosen NV,
the same region is then located in FIB system and a python script is
used to map the FIB co-ordinates with the confocal co-ordinates.

Along with the SIL diameter, an important parameter is the cone
size surrounding the SIL. The radius of this cone is important to avoid
any scattering and absorption of the light emitted at high angles and
depends upon the SIL radius and the NA of the objective. Once the FIB
co-ordinates of the four holes are known and mapped wth the optical
co-ordinates, a SIL and the cone are milled by moving the beam along
a 'double spiral' path where the dwell time is adjusted at each point to
create the desired radial pro�le.
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Figure 6.9: (a)Confocal scan of a 20×20 µm2 region showing four etched
holes. (b) A single NV center inside the same region at a depth of ∼5 µm.
(c) The recognition of the same hole markers on the surface using SEM.

The ion beam starts on the outside, spirals inwards and then spirals
outwards again. The same path is written many times with optimal
beam focus, resulting in a smooth SIL and cone pro�le. A number of
SILs were milled in this fashion (Fig. [6.10]) and the milling time varied
between 40 to 60 minutes depending upon the SIL radius.

Figure 6.10: (a) A solid immersion lens fabricated with a single NV cen-
ter at its origin. (b) Confocal scan of the SIL in (a) with a single NV at its
centroid. Inset shows a zoom in on the NV and the g2(τ) measurement.(c)
Another solid immersion lens fabricated containing a number of single NV
centers. at its origin. (d) Confocal scan of the SIL in (c), inset shows a
zoom in on one of the NVs and the performed g2(τ) measurement.

The fabrication of SILs is followed by thorough cleaning of the dia-
mond surface in a boiling triacid solution to remove any graphitic car-
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bon, gallium and other organic unwanted contents for atleast three hours.
The triacid solution consists of a mixture of sulphuric (H2SO4), nitric
(HNO3) and perchloric acid (HClO4) in equal volume concentration
(1 : 1 : 1). After triacid boiling, the sample is ready to be inspected in
the CM setup to test the accuracy of the described SIL fabrication pro-
cess. As an example, two of the milled SILs and the resulting confocal
scans are shown in Fig. [6.10]. For the SIL in [6.10]a, the confocal scans
show a single NV center right at the origin, validating the precision and
accuracy of the fabrication process. Fig. [6.10]c shows a SIL that was
milled in area containing multiple single NV centers in close proximity,
as can be seen by the following confocal scan in [6.10]d.

6.4 Diamond membranes and NV center creation

The nanopillars used in this thesis were fabricated in a diamond mem-
brane with a ∼30 µm thickness. The diamond membrane is created from
another ultra high purity, electronic grade, type IIa single crystal plate
(4.5×4.5×0.50 mm) from Element 6. The sample is similar in character-
istics to the one used in 6.2.2. For membrane formation, the sample was
shipped to Applied Diamond, Inc. (US), where it was cut and polished
into membranes of dimension (2.25 × 2.25 × 0.030 mm). The obtained
membranes are extremely thin and their treatment requires delicacy.

In order to create single NV centers, the ion implantation facilities at
the University of Stuttgart were used to implant the received membranes
with nitrogen ions (15N+) at energies of 2.5 and 5 KeV and an implan-
tation dose of 100− 200 ions/µm2. Following the implantation process,
the diamond sample was annealed at a temperature of 850 ◦C under high
vacuum (Pressure < 10−6 mbar) for 10 hours. The annealed sample was
then cleaned for any graphite contamination by using a boiling triacid
solution (a 1:1:1 mixture of sulfuric, nitric, and perchloric acids). This
step ensures the stabilization of the charge state of the shallow NV cen-
ters [196]. After NV creation, the sample is ready for EBL and RIE to
fabricate nanopillars on top of the shallow NV centers.

6.4.1 Tapered nanopillar fabrication

The canonical geometry of the tapered waveguides plays a vital role in
e�cient mode guiding and enhanced photon collection [174]. Through
precise regulation and control of parameters such as the exposure dose of
the resist and the plasma etching parameters, the desired pillar geometry
can be achieved. Fig. 6.11 represents the schematic scheme for the
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complete fabrication process. The fabrication process for the tapered
nanopillars is followed from [174] and for ease of understanding, a brief
and concise description of the process is provided here.

The membrane was glued on top of a silicon wafer using epoxy glue
for structural support during the preparation steps. For electron beam
writing of the nanopillars, Hydrogen Silsesquioxane (HSQ) FOXr25, a
negative resist, was used. This resist has many attractive properties and
provides a uniform and well-controlled thickness. Moreover, it o�ers high
resolution, a good resistance to plasma etching and can be directly used
as an etch mask for pattern transfer [197]. For the sample preparation,
due to the poor adhesion of FOXr25 on diamond, a 5 nm layer of
chromium (Cr) was thermally evaporated at a rate of 1 Å/s on top of
the substrate as an adhesion layer. A ∼450 nm thick layer of the HSQ
resist is then deposited on top of the adhesion layer through spin coating
at 6 KRPM (45 sec) followed by a soft bake (1 min) at 90 ◦C. In the next
step, another 5 nm layer of Cr was deposited on top of the HSQ resist as
an anti-charging layer to avoid any charging e�ects under electron beam
exposure (see Fig. 6.11).

Figure 6.11: (a)-(e) is a schematic representation of all the steps for
nanopillar fabrication using electron beam lithography and RIE/ICP etch-
ing processes.

For electron beam writing of the nanopillars, a Raith Eline system (20
kV acceleration voltage, 10 µm aperture and an exposure dose of 3000-
4000 µC/cm2) at the Max Planck institute, Stuttgart was used. The
sample was then exposed to the electron beam for nanopillar writing
in the area of the sample that was nitrogen implanted. Afterwards, the
anti-charging Cr layer was chemically etched away and the exposed mask
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was then developed in an MF-322 developer for 8 minutes.
To structure the nanopillars into their �nal shape (top diameter ∼400

nm, bottom diameter ∼900 nm) a reactive ion etching (RIE) and in-
ductively coupled plasma (ICP) process was performed. An Oxford
PlasmaPro NGP80 system was used for the RIE-ICP etching. The
etching process involves three repeated cycles in an oxygen plasma at
a constant RIE power (100 W) and pressure (10 mTorr). To obtain the
desired canonical nanopillar geometry, ICP power was regulated to 600
W in each cycle. In-between each etching cycle, a quick 7 second interval
of O2/CF4 was used to etch out any resist particles from the membrane
surface. The complete etching recipe is provided in detail in [174].

After the etching process, the HSQ mask from the top of the pillars
was completely removed by drowning the sample in a bu�ered hydro�u-
oric acid (BHF) solution. The sample was then boiled in the triacid
solution and properly cleaned to remove any unwanted contaminants on
the surface before using it in CM setup. The fabricated nanopillars are
shown below in Fig. 6.12.

Figure 6.12: (a) SEM image of arrays of nanopillars tapered to the
desired canonical geometry through EBL and RIE. (b) SEM image of a
single tapered diamond nanopillar. The images are used as an example
and are reproduced from [174].

6.4.2 Optical detection of NV centers in nanopillars

For confocal microscopy of the diamond membrane, the membrane sam-
ple is mounted such that the shallow NV centers inside the tapered
nanopillars are optically excited from the other (non-pillar) side using
a microscope objective. The emission from the NV center is collected by
the same microscope objective due to the preferred HE11 mode guiding
characteristics of the waveguide. Fig [6.13] shows a 20×20 µm2 confocal
scan of a pillar fabricated region of the waveguides.
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Figure 6.13: Confocal image of a 20 × 20 µm2 area showing arrays of
fabricated nanopillars with three of the pillars containing single NV cen-
ters. Single photon emission is con�rmed and a zoomed in image of the
marked pillar is also shown.

Arrays of pillars with a 5 µm pitch can be easily seen with three such
pillars containing single NV centers. Overall scanning of the sample indi-
cated around ∼20% of the tapered nanopillars hosting single NV centers,
giving rise to a considerably enhanced photon collection as compared to
a single NV under a planar diamond surface.

6.5 Comparison between the collection enhancement meth-
ods

In the previous two sections, two of the explored methods that have
demonstrated enhanced photon collection of the NV center emission were
presented. Successful excitation and optical detection of a single NV
center in the fabricated photonic structures was validated. Here, we will
present and compare the observed increased photon collection capabili-
ties of each method not only over a single NV in planar diamond sample
containing no structures but also with respect to each other.

In Fig. [6.14], the detected photon counts (cps) by a single NV
center are plotted as a function of the excitation intensity. The blue
line represents a single NV center under a planar diamond surface. The
detected photon counts, in the absence of a photonic structure to enhance
collection, is low as the collection su�ers greatly due to refraction losses
at the air-diamond interface. The red line represents photon counts of
a single NV center in SIL 2 (Fig. 6.9c), indicated by an arrow. The
single NV center is not at the origin of the SIL but a factor of 4 increase
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in saturation counts can be observed. As mentioned before, the photon
collection su�ers if the NV is not at the SIL centroid. The NV center
showed stable counts under continuous excitation for a prolonged period
of time.

The cyan line is the photon counts of a single NV center in SIL 1
(Fig. 6.9a). The NV center is at the center of the etched SIL and a
factor of 5 increase in saturation counts is observed. Keeping in mind
that the NV center is approximately at the origin of the SIL, a larger
increase in comparison to the detected counts from the previous SIL was
expected. It is important to mention that the NV center showed greater
counts in general but su�ered from blinking. The reason for this blinking
behaviour is yet unknown [167].

Figure 6.14: Comparison of observed time averaged photon �ux from
single NV centers under planar diamond surface, inside two SILs and a
fabricated nanopillar. A clear enhancement in the photon collection can be
observed using SILs and canonically tapered nanopillar, with the nanopil-
lar providing the largest enhancement. The �t of the data points is only
for the eye.

Lastly, the green line curve represents the counts detected from a
single NV center in a fabricated nanopillar. The detected photon rate is
by far the greatest using the nanopillars by a factor of ∼9. It is pertinent
to mention that due to the small thickness of the diamond membrane, for
ease of handling, the membrane was glued on top of a microscope glass
slide creating a diamond-air-glass interface. The photon collection su�ers
from this diamond-air-glass interface and even higher photon collection
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rates may be achieved if this interface was eliminated. AR coating of the
glass surface may prove helpful in this regard.

6.6 Conclusions

Experimental identi�cation, excitation and detection of a single NV cen-
ter, both in nanodiamond crystals and bulk diamond, is reported using
a confocal microscope setup. The single emitter nature is con�rmed by
measuring the value of second order correlation function (g2(τ)) using a
Hanburry Brown Twiss con�guration. Furthermore, two di�erent meth-
ods to enhance photon collection from the emitted NV �uorescence in
bulk diamond were described. Both these methods demonstrated a sig-
ni�cant increase in the detected photon counts in comparison to a single
NV center under a planar diamond surface. The nanofabricated dia-
mond waveguides in particular demonstrated a larger enhancement in
the detected optical photon rate. These two explored methods, along
with many others, can prove to be important stepping stones for future
devices and applications employing single NV centers.
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7. Appendix

7.1 Quantum versus classical high level RACs

In section 2.2, QRACs of the form (d+ 1)(d) 7→ 1, for d ∈ {2, .., 8} were
mentioned [39]. It was reported that despite their potential, high level
RACs have not seen much attention otherwise. In [? ], the average
success probability of these (d + 1)(d) 7→ 1 QRACs is derived but they
were unable to test their resourcefulness as no optimal classical model
for such high level RACs was available. In 2.2.1, such a model of op-
timal classical RAC n(d) 7→ 1 is presented, where the average success
probability of these RACS, for n = 2 and n = 3, is shown in eq. 2.13.
This optimal classical RAC can be used together with the (d+ 1)(d) 7→ 1
QRACs to calculate the respective quantum advantage (pQ/pC). Such
a comparison is presented below in Table 7.1, where its apparent that
the quantum success probability outscores the classical probability for all
d. Increasing the dimension of the RAC evidently leads to superior and
more resourceful QRACs. The �rst case, when d = 2, is the well-known
case of 32 7→ 1 QRAC reported by Chuang [38]. It is clear from the table
that the quantum advantage is enlarged for all d > 2 when compared
to the standard well known case of d = 2 with the maximum advantage
seen at d = 5, (pQ/pC) = 1.0953.

Table 7.1: Performance comparison of (d + 1)(d) 7→ 1 QRACs reported
in [39] against high level classical codes. Reproduced from [41].

d pQ pC pQ/pC

2 0.789 0.75 1.052
3 0.637 0.593 1.075
4 0.5424 0.4961 1.0933
5 0.4700 0.4291 1.0953
6 0.3720 0.3420 1.0876
7 0.3372 0.3118 1.0815

Now that we have compared the performance of our classical RACs
with already known QRACs of dimensions greater than 2, we will com-
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pare these classical RACs with the high level QRACs nd 7→ 1, pre-
sented in the section 1.2.2 for n = 2 case. Such a quantum advantage
pQ/pC computed from eq. 2.22 when n = 2 is shown in Fig. 7.1 for
d ∈ {0, ..., 50}. The quantum advantage increases with d and reaches its
peak when d = 6 with the largest quantum advantage of pQ/pC ≈ 1.207.
For the well known 22 7→ 1 code, the corresponding quantum advantage
is pQ2,2/p

C
2,2 ≈ 1.138. After d = 6, it starts to decrease with increasing

d and eventually falls o� to unity when the average quantum success
probability matches the classical for very large d. In terms of absolute
numbers, it is already shown that the di�erence between the two success
probabilities, pQ2,d − pC2,d, is maximum for d = 4 and an experimental
demonstration of such a 24 7→ 1 QRAC is shown in chapter 6. Although

Figure 7.1: The ratio between quantum and classical success probabilities
as a function of d for the 2d 7→ 1 and 3d 7→ 1 QRACs. Reproduced from
[41].

not in the scope of this thesis but in the paper [41] the case of 3d 7→ 1
QRAC is also considered. The optimal or maximum quantum advantage
of pQ/pC ≈ 1.224 is achieved for d = 13. For the corresponding 32 7→ 1
code [39], the respective quantum advantage is pQ3,2/p

C
3,2 ≈ 1.052, which

is four times smaller than pQ3,13/p
C
3,13. In both cases of nd 7→ 1 QRACs

considered, the optimal quantum advantage is signi�cantly larger than
the n2 7→ 1 QRACs. This clearly depicts the point that single qudit
communication using a system with dimensions greater than two consid-
erably demonstrates the superiority of such quantum resources not only
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over their classical contemporaries but also over the d = 2 families of
QRACs. The advantage of using higher dimensional quantum systems is
clearly established over similar known quantum resources of dimensions
two. For the nd 7→ 1 QRACs, the optimal advantage of n = 3 class of
QRACs is also shown to be higher than the n = 2 class.

7.2 Experimental measurements of 24 7→ 1 QRAC

The experimental implementation and results for 24 7→ 1 QRAC were
presented in ch. 2.3.3. Here, I will give a detailed account of measure-
ments for all the 16 states for both measurement bases along with the
obtained QRAC probabilities in each individual detector setting corre-
sponding to the initial state shown in eq. 2.24.
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7.3 Experimental measurements of test of non-classicality

In section 3.2.4.3, the measurements and the results of the experiment
were presented. Here, in this section, All the measurements settings and
results for the 128 measurements are presented. The probabilities are
estimated from the corresponding detection events.
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7.4 Experimental measurements for the 3 7→ 1 distributed
QRAC

Table 7.2: Experimentally estimated probabilities for the QRAC task,
x0 ⊕ x2, x1, x2, for measurements performed in the σy, σx, σz bases.

Unitary by Bob (1l)

Di�erent Tasks State σy σx σz
f(x, 0), f(x, 1), f(x, 2) x0x1 D1 D2 D1 D2 D1 D2

00 0.211 ± 0.014 0.789 ± 0.014 0.788 ± 0.016 0.212 ± 0.016 0.789 ± 0.020 0.211 ± 0.020

x0 ⊕ x2, x1, x2 01 0.212 ± 0.014 0.788 ± 0.014 0.214 ± 0.016 0.786 ± 0.017 0.786 ± 0.018 0.214 ± 0.018

11 0.788 ± 0.014 0.212 ± 0.013 0.209 ± 0.018 0.791 ± 0.018 0.790 ± 0.020 0.210 ± 0.020

10 0.800 ± 0.013 0.200 ± 0.013 0.785 ± 0.019 0.215 ± 0.019 0.787 ± 0.018 0.213 ± 0.018

Unitary by Bob (Rx(π))

00 0.797 ± 0.017 0.203 ± 0.017 0.786 ± 0.019 0.214 ± 0.018 0.212 ± 0.023 0.788 ± 0.023

x0 ⊕ x1, x0, x1 01 0.789 ± 0.017 0.211 ± 0.017 0.210 ± 0.020 0.790 ± 0.020 0.213 ± 0.020 0.787 ± 0.021

11 0.211 ± 0.016 0.789 ± 0.017 0.209 ± 0.017 0.791 ± 0.017 0.206 ± 0.023 0.794 ± 0.023

10 0.207 ± 0.017 0.793 ± 0.017 0.795 ± 0.016 0.205 ± 0.016 0.214 ± 0.020 0.786 ± 0.020

Table 7.3: Experimentally estimated probabilities for the QRAC task,
x0, x1, x2 ⊕ x0, for measurements performed in the σy, σx, σz bases.

Di�erent Tasks State σy σx σz
f(x, 0), f(x, 1), f(x, 2) x0x1 D1 D2 D1 D2 D1 D2

00 0.211 ± 0.013 0.789 ± 0.014 0.788 ± 0.016 0.212 ± 0.016 0.789 ± 0.021 0.211 ± 0.021

x0, x1, x2 ⊕ x0 01 0.212 ± 0.013 0.788 ± 0.014 0.214 ± 0.016 0.786 ± 0.016 0.786 ± 0.017 0.214 ± 0.017

11 0.783 ± 0.013 0.217 ± 0.013 0.208 ± 0.016 0.792 ± 0.017 0.216 ± 0.020 0.784 ± 0.020

10 0.789 ± 0.014 0.211 ± 0.013 0.788 ± 0.016 0.212 ± 0.016 0.213 ± 0.017 0.787 ± 0.017

Unitary by Bob (Rx(3π/2))
00 0.796 ± 0.019 0.204 ± 0.019 0.787 ± 0.015 0.213 ± 0.015 0.790 ± 0.022 0.210 ± 0.022

x0, x1, x2 ⊕ x0 01 0.791 ± 0.018 0.209 ± 0.018 0.214 ± 0.016 0.786 ± 0.016 0.782 ± 0.019 0.218 ± 0.019

11 0.214 ± 0.019 0.786 ± 0.019 0.214 ± 0.016 0.786 ± 0.016 0.218 ± 0.022 0.782 ± 0.022

10 0.219 ± 0.018 0.781 ± 0.018 0.788 ± 0.016 0.212 ± 0.016 0.214 ± 0.019 0.786 ± 0.020

Table 7.4: Experimentally estimated probabilities for the QRAC task,
x0 ⊕ x2, x1, x0, for measurements performed in the σy, σx, σz bases.

Unitary by Bob (1l)
Di�erent Tasks State σy σx σz

f(x, 0), f(x, 1), f(x, 2) x0x1 D1 D2 D1 D2 D1 D2

00 0.211 ± 0.013 0.789 ± 0.014 0.788 ± 0.016 0.212 ± 0.016 0.789 ± 0.021 0.211 ± 0.021

x0 ⊕ x2, x1, x0 01 0.212 ± 0.013 0.788 ± 0.014 0.214 ± 0.016 0.786 ± 0.017 0.786 ± 0.018 0.214 ± 0.018

11 0.783 ± 0.014 0.217 ± 0.014 0.208 ± 0.016 0.792 ± 0.016 0.216 ± 0.020 0.784 ± 0.021

10 0.789 ± 0.014 0.211 ± 0.013 0.788 ± 0.016 0.212 ± 0.016 0.213 ± 0.017 0.787 ± 0.018

Unitary by Bob (Rx(π/2))
00 0.221 ± 0.017 0.779 ± 0.017 0.798 ± 0.017 0.202 ± 0.016 0.214 ± 0.018 0.786 ± 0.019

x0 ⊕ x2, x1, x0 01 0.215 ± 0.018 0.785 ± 0.018 0.212 ± 0.016 0.788 ± 0.017 0.208 ± 0.021 0.792 ± 0.021

11 0.784 ± 0.019 0.216 ± 0.019 0.211 ± 0.016 0.789 ± 0.016 0.784 ± 0.019 0.216 ± 0.019

10 0.795 ± 0.019 0.205 ± 0.019 0.788 ± 0.016 0.212 ± 0.016 0.796 ± 0.022 0.204 ± 0.021
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Table 7.5: Experimentally estimated probabilities for the QRAC task,
x0 ⊕ x2, x1 ⊕ x2, x0, for measurements performed in the σy, σx, σz bases.

Unitary by Bob (1l)
Di�erent Tasks State σy σx σz

f(x, 0), f(x, 1), f(x, 2) x0x1 D1 D2 D1 D2 D1 D2

00 0.211 ± 0.013 0.789 ± 0.014 0.788 ± 0.016 0.212 ± 0.016 0.789 ± 0.021 0.211 ± 0.021

x0 ⊕ x2, x1 ⊕ x2, x0 01 0.212 ± 0.013 0.788 ± 0.014 0.214 ± 0.016 0.786 ± 0.017 0.786 ± 0.017 0.214 ± 0.017

11 0.783 ± 0.014 0.217 ± 0.013 0.208 ± 0.016 0.792 ± 0.016 0.216 ± 0.021 0.784 ± 0.021

10 0.789 ± 0.014 0.211 ± 0.013 0.788 ± 0.016 0.212 ± 0.016 0.213 ± 0.018 0.787 ± 0.019

Unitary by Bob (Rz(π))
00 0.785 ± 0.016 0.215 ± 0.016 0.209 ± 0.015 0.791 ± 0.015 0.789 ± 0.022 0.211 ± 0.022

x0 ⊕ x2, x1 ⊕ x2, x0 01 0.795 ± 0.016 0.205 ± 0.015 0.785 ± 0.016 0.215 ± 0.016 0.788 ± 0.021 0.212 ± 0.021

11 0.213 ± 0.015 0.787 ± 0.016 0.789 ± 0.015 0.211 ± 0.015 0.211 ± 0.021 0.789 ± 0.021

10 0.211 ± 0.016 0.789 ± 0.016 0.213 ± 0.015 0.787 ± 0.015 0.218 ± 0.022 0.782 ± 0.022
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Summary

This thesis covers the the work produced in the articles I-V based on sin-
gle quantum system enabled communication. In addition, single photon
emission from NV centers in diamond along with di�erent alternatives
to enhance the photon collection e�ciency are explored.

Article I introduced and laid down the theoretical ground work for
a class of quantum random access codes with dimensions d greater than
2. In such class of d-level QRACs, Alice can only communicate one bit
at a time to Bob who then performs a measurement depending upon his
bit of interest. To test the results predicted by theory, an experiment
was designed where 2(4) 7→ 1 was implemented experimentally in the
laboratory. All 16 encoding states of Alice were prepared and were mea-
sured by Bob in both the computational and Fourier basis. From the
measurement results and recorded data, the success probabilities were
calculated. The results of the experiment are in good agreement with
the predictions of quantum mechanics and the average success probabil-
ity (PQ2,4 ≈ 0.754± 0.038) violates the classical bound (PC2,4 ≈ 0.625). In
article I, it was also shown that high-level QRACs of dimension d pro-
vide a signi�cant advantage over not only classical RACs of equivalent
dimensions but also the commonly used QRACs of dimensions 2.

Article II focussed on the amount of randomness certi�ed by using
the experimentally demonstrated 2(4) 7→ 1 QRAC in a semi-device inde-
pendent (SDI) scheme. The security parameter (T ) was used to certify
the amount of randomness generated, which was then quanti�ed by the
minimum entropy function (H∞). A method is presented based on the
generalization of SDI random number generation protocols of the case
in which the randomness is extracted from more than one choice of in-
puts. The computational capacity required for the task is however very
large but a method to drastically reduce these strong demands on com-
putational requirements was also presented in the regard. By using this
approach, it was shown that more randomness can be certi�ed without
altering or placing stringent demands on the experimental setup.

Article III presented a parallel implementation of two 2-dimensional
QRACs in a SDI scenario for performing a test of non-classicality with-



out any dependence on detector e�ciency or other additional conditions
on the devices. This test of non-classicality conclusively proved the non-
classicality of the 2-dimensional quantum system communicated between
preparation and measurement devices. The main advantage of such a test
is the simplicity of implementation. It is also not limited by high detec-
tion e�ciencies or strong assumptions as independence of the devices.

Article IV focuses on the adaptation of a 3 7→ 1 QRAC to a one-path
communication network consisting of a single preparation, transforma-
tion and measurement device. This distributed QRAC is the simplest
such adaptation of the QRAC for the purpose. Four tasks that lead
to optimal success probabilities for the distributed QRAC are presented
and experimentally demonstrated. The obtained experimental results for
each task are in good agreement with the optimal case and validate the
successful adaptation of a standard 3 7→ 1 QRAC to a one-path general
communication network.

Article V presents a novel quantum solution to the known problems
of dining cryptographers and anonymous voting. The protocol is based
on a �ying particle implementation and a single quantum system is dis-
tributed between N+2 parties where N , represents the number of voting
participants. The protocol consists of two rounds where one round is
used to establish the infrastructure necessary for voter's privacy and the
second round is the actual voting round. A 3-party experimental demon-
stration of the protocol is provided for this purpose. The experimental
results validate the successful application of our quantum solution for
the 3-party dining cryptographers and anonymous veto voting problems.

Chapter 5 contains a theoretical introduction of NV center charac-
teristics, where this defect center in diamond is studied as a resource
for single photon emission. In addition, a brief account of some of the
methods utilized to enhance the photon collection e�ciency from the NV
center is also provided.

In chapter 6, single photon emission was observed using a purpose
built confocal microscope setup, from NV centers in nanodiamond crys-
tals and bulk diamond samples. To enhance the photon collection e�-
ciency from NV centers in bulk diamond, micrometer SILs and tapered
nanopillars were fabricated. A signi�cant enhancement in the collected
photon �ux, as compared to a single NV center under planar diamond
surface, was observed in both cases. The nanopillar geometry provided
the highest collection e�ciency of the two methods. With this enhance-
ment in photon collection, single photons from an NV center may also
be used in similar single quantum system based communication experi-
ments.
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